
angle between a 1 and position ray of element, Fig. 4
angle between a 1 and normal to S-front
small quantity for purposes of asymptotic expansion
increments of a, U, etc., at a front
small quantity for purposes of asymptotic expansion
strain, strain rates
elastic and inelastic strain rates, respectively

small quantity for purposes of asymptotic expansion
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NOTATIONt

b 1..... 9 functions defined by equations (31), (38), (157) and (158)
cp, es, c velocity of propagation of elastic P-waves, S-waves, and inelastic shock fronts, respectively
E Young's modulus
F plastic potential, equation (4)
G shear modulus
J l' J 2 invariants, equations (2) and (3)

2(1 +v)
K 3(1-2v)G bulk modulus

L < 0 function related to inelastic behavior, equation (28)
p(x- Vt) surface pressure
Po intensity of step pressure
R ratio of principal stresses
SI' S2 principal stress deviators
sx' Sy' SN' ST' Si} stress deviators with respect to axes x, y, etc.
t time
U, iJ particle velocities in x and y directions, respectively
UN' UT normal and tangential component of particle velocities, respectively
U characteristic velocity
V velocity of surface pressure
x, y Cartesian coordinates, Fig. I

X pV
2

. 2 d' . I .2G sm rp non ImenSlOna expressIOn

X p, X S values of X at P- and S-fronts, respectively
Cl material parameter related to the angle of internal friction, equation (126)

p = :Sl - S2 nondimensional stress variable
St +S2

r
<5
~ P-3
~o', ~u, etc.
e rp- iP

* The paper contains results of research sponsored by the Air Force Weapons Laboratory, Kirtland Base,
N.M., with P. Weidlinger, Cons. Engineers.

t Other symbols, which are used in one location only. are defined as they occur.
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o
;. > 0

a2J
J1.=--'­

8, +82
V

7t = 3·14159 ...
p
(ju,o-ij

ai' (J2' 0"3

r
rp
rpp, rps, rp
rpl' rp2' etc.
<f>
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angle defining the direction of the major principal stress, Fig. 4
function related to inelastic behavior, equation (10)

nondimensional stress variable

Poisson's ratio

mass density of medium
stresses, stress rates
principal stresses
shear stress
position angle of element, Fig. 4
position of elastic P- and S- and inelastic shock fronts, respectively
limits of inelastic regions
angle of internal friction
differentiation with respect to rp

Abstract-The two-{fimensional steady-state problem of the effect of a step pressure traveling with superseismic
velocity on the surface of a half-space is treated for an elastic-plastic material. The plasticity condition selected
is a function of the first and second invariants of the stress tensor, and is suitable for a granular medium where
inelastic deformations are due to internal slip subject to Coulomb friction.

The problem is inherently nonlinear and leads to a system of coupled nonlinear differential equations which
are solved by digital computer. The character of the solutions is radically dependent on the significant non­
dimensional parameters, i.e. the Mach number, Poisson's ratio and a value IX defining the angle of internal friction.
A table giving the solutions for various combinations of the parameters is given.

1. INTRODUCTION

THE two dimensional problem of the effect of a pressure pulse p(x - Vt) progressing with
the velocity V on the surface of an elastic half-space, Fig. I, has been treated by Cole
and Huth [1Jfor a line load and, by superposition, may be found for any other distribution
p(x - Vt). Miles [2J has considered the three dimensional problem of loads with axially
symmetric distribution p(r, t) over an expanding circular area on the surface, Fig. 2. He
has demonstrated that the plane problem [1 J contains the asymptotic solution for the
three dimensional proolem [2J in the region near the wave front. The actual solution of
the three dimensional problem would require a great numerical effort, which can be
avoided by using the solution of the plane problem to estimate the effect of circularly
expanding surface loads.

Real materials can not be expected to be elastic, and solutions of the three-dimensional
problem, Fig. 2, for dissipative materials are extremely complex. However, estimates for
the three-dimensional case can be made from generalizations of the problem treated in
[lJ for dissipative materials. This has been done for linearly viscoelastic materials [3J
and [4J, in the superseismic and subseismic ranges, respectively. The superseismic case
for an elastic-plastic material subject to the von Mises yield condition has recently been
treated [5J by two of the authors. For possible application to granular media the present
paper considers an alternative material where internal slip subject to Coulomb friction
may occur.

The slip mechanism in the medium makes the problem nonliqear, so that super­
position is not permitted and each pressure distribution p(x - Vt) poses a separate problem.
The present paper treats only the case ofa progressing step load p(x- Vt) == PoH(Vt-x).
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Based on concepts of the theory of elastic-plastic materials, it is shown in [6] that an
isotropic material subject to internal Coulomb friction can be represented by a model,
the behavior of which is governed by a plastic potential

where J 1 and J 2 are the invariants

J 1 = (J'ii

J2 = tSijSij

(1)

(2)

(3)

while ex > 0 and k ~ 0 are material constants. ex is related to the angle of internal friction
and is therefore subject to the limit ex < J l2' [6], and k is a measure of the cohesion.
Because the surface pressures for which this study is intended are large compared to the
magnitude of cohesion, only the limiting case k -. 0, is considered. Equation (1) then gives

(4)

The effect of the restriction to the limiting case k -. 0 is discussed in the Conclusions.
The behavior of the material is described by the following statements:
1. To represent a granular material with no cohesion, the mean stress J tl3 must be

compressive, or

J 1 ~ O.

2. If, in an element of the material at a given instant,

F<O

(5)

(6)

the changes in stress and strain, (,;j' Bij will be related by the conventional elastic
relations.

3. However, if the yield condition at a time t is satisfied

F=O (7)

three possibilities exist. There may be further loading of the element with permanent
plastic deformation and dissipation of energy, in which case F = O. Alterna~ively,
there may be unloading without permanen~ deformation, in which case F < O.
Finally, there may be a neutral state, where F = 0, but no permanent deformation
or energy dissipation occurs. If plastic deformations occur, the total strain rate will
be the sum of an elastic and a plastic portion

where Bt is obtained from the conventional elastic relations, while

B~ = A~F .
u(J'ij

The quantity A, which must be positive,

A>O

(8)

(9)

(10)
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is an a priori unknown function of space and time. In case of unloading, and in the
neutral case the elastic stress-strain relations

(11 )

apply. The neutral case occurs in the solutions obtained later in regions where
Bij == aij == O.

The fact that the same set of differential equations does not hold everywhere, but that
there are regions with moving, a priori unknown boundaries, complicates the solution of
dynamic problems in this type ofmaterial considerably. In the following, the basic equations
will be formulated separately in regions with and without additional permanent deforma­
tions at the particular time t, and the solutions will be matched to obtain a complete
solution satisfying the prescribed surface conditions. The problem being much too complex
to expect closed solutions, a numerical approach suitable for digital computers will be
employed. The technique is related to the theory of characteristics and is a generalization
of the method used in [7].

_VELOCITY V

F,G. I

The problem to be solved considers only the steady-state, i.e. the fact is ignored that
in reality the loads p(x - Vt) in Fig. 1 must have begun at some large but finite negative
value of time. This omission of the initial condition results in a lack of uniqueness, which
can be removed by consideration of the character of solutions of the problem in Fig. 2.

---VELOCITY V

x

i!

y

FIG. 2



Moving step load on the surface of a half-space of granular material 247

The lack of uniqueness and a remedy are best seen in the elementary example of a half­
space of an inviscid compressible fluid loaded by a uniform pressure pulse, p, which
progresses with supersonic velocity, V> c. There is an obvious solution, Fig. 3a, in which
the load produces a plane wave of intensity p progressing with a front inclined at the
appropriate angle 'IJ = sin - 1 c/v. However, this is not the only steady-state solution. An
alternative is a plane wave, the front of which is inclined at the angle 1800

- 'IJ. Combina­
tions of the two solutions are also correct steady-state solutions. To find states generated
by the application of pressure on the surface only, it can be reasoned that solutions which
include the wave front shown in Fig. 3b can not apply because the medium ahead of the
front shown in Fig. 3a should be undisturbed when the applied load moves with supersonic
velocity. Thus, in case of the fluid a unique solution is obtained. Similar reasoning will be
used in the present problem.

y

FIG.3a

FIG.3b

2. FORMULATION OF THE BASIC EQUATIONS

Figure 4 indicates the half-space and a system of Cartesian coordinates. x is in the
direction of motion of the step load, y and z are normal to the surface in and out of the
plane of the paper, respectively. The analysis considers the case of plane strain, ez = 0,
when the velocity of V of the step load is superseismic, i.e. larger than the velocity of
elastic P-waves in the material. Throughout the analysis it is assumed that the strains
and velocities are small.

As stated in the introduction there are, in general, inelastic regions in space-time where
additional permanent deformations occur, and other regions where changes of stress and
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FIG. 4

strain are entirely elastic. The basic differential equations for the two types of region must
be treated separately. It will also be necessary to consider the possibility of shock fronts,
where the differential equations break down.

2.1 Inelastic regions

Combining the familiar stress-strain relation

'E I + v [ v . l
cij = E aij-l + /5ijak~

where J jj is the Kroneker delta, and the relation

. 1. .
c.. = -[u ..+u ..]

IJ 2 I.J J,I

gives, for plane strain, four constitutive equations

(12)

(13)

(14)

(17)

(16)

(15)
aiJ 1. .. aF
-a = -E[ayy-v(O'xx+O'zz)]+A-

a
-

y O'yy

O 1[ . ( . .)]. aF= - O'zz-v O'yy+O'xx +).-a
E ~=

au au 1. .aF
-+- = -T+),­cy ax G aT

where uand vare, respectively, the x and ycomponents of the particle velocity. Further,
in a linear theory the two equations of motion are

aaxx aT au
ax + oy = Pat (Ie)

(19)
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The yield condition, equation (4), and equations (14)-(19) form a set of seven equations
governing inelastic regions. Inherently, however, the unknown function A must satisfy
the inequality A> 0, equation (10), required for an element in an inelastic region.

It was found convenient to express the four unknown stresses by four other variables,
viz. the invariant J l' the two principal stress deviators Sl and S2' and the angle () formed
by the direction of s1 with the surface, Fig. 4. The appropriate relations are

(Txx = S2 sin2 ()+Sl cos2 ()+j-J 1

. 2 () 2 () 1J
(Tyy = Sl sm +S2 cos +"3 1

(Tzz = -Sl- S2+j-J 1

(T -(T

r = T sin 2().

(20)

(21)

(22)

(23)

In the numerical analysis the subscripts 1 and 2 will be selected such that S 1 is the major
compressive deviator.

Because the steady state case is considered, all quantities appearing in the analysis
which are functions of x and t must be of the form f(x- Vt). For the step load
p = PoH(Vt-x), dimensional considerations similar to those used in [5] make it plausible
that the various quantities do not depend on x- Vt and y separately, but must be solely
functions of the ratio (x - Vt)/y. This permits introduction of the angle 4J, shown in Fig. 4,
as new independent variable,

A. _l x - Vt
'I' = cot --.

Y
(24)

This transformation changes the six partial differential equations obtained above into a
set of six simultaneous ordinary differential equations. A seventh differential equation is
obtained by taking a derivative of the yield condition. By elimination of the velocities
Ii and V, one finally obtains a system of five ordinary differential equations,*

-1 -1
1-2v

0 s'-- Sl+ S2+
l+v 1

+2a2J 1

sin2 y cos2 y 1_3x(1-2V) -sin 2y -6Xa2J 1 s~
l+v

t sin 2y t sin 2y sin 2y 2X-l 0 V~ =0 (25)

sin2 y-X X -cos2 Y -cos 2y 0 X(Sl +S2) (Sl- S 2)e'

2s 1 +S2 Sl +2s2 -6rx2J 1 0 0
GL
-

V

* Details of the manipulations may be found in [8].
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)' = rp-O

pV2

X = 2G sin 2
rp

(26)

(27)

(28)
J.y

L = + . 2 < O.
exJ Ism rp

The meaning of the angle y is shown in Fig. 4. The inequality in equation (28) follows
from A. > 0, equation (10), and J I < 0, equation (5).

The unknowns in the differential equations (25) are four quantities defining the stress
field, S I' S2' J I and e, and a fifth quantity L which is a measure of the rate of plastic
deformation. The set of equations is linear and homogeneous in the four derivatives and
in the quantity L, and may be satisfied by

(29)

However, L = 0 implies ), = 0, which violates equation (10). It follows that in an
inelastic region the determinant of equations (25) must vanish, giving the "determinantal
equation"

where

and

b l = 2[1 +(l-2X)(1-2v)] 1
b2 = fJcos2y+(1-2X)[1-2v-4fl(l+V)]

b3 = (l+v)(l-2X)(1+2fl)2-p2X

fJ= SI- S2

SI +S2

,');2J I

fl=--·
SI +S2

(30)

(31 )

(32)

(33)

(34)

Due to the vanishing of its determinant only four of the five equations (25) are
independent. As L may not vanish, s~, s~, J'I and e' can always be expressed in terms of L,

, I, GL
SI = 1{S I +s2)(bs+b47

GL
0' = b6­

V

(35)

(36)

(37)
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(38)

2 [b Z ]b = -- -cos2y-pX
4 1-2X b1

2 [1-2V b l
bs = 3(l+v) l+v b:+ 1+et:J(3+ PZ )J

b _ sin 2y bz
6 - P(1-2X) b1

b _b2 _bs
7 - b 2'

1

Since equation (30) must remain valid throughout an inelastic region, it may be
differentiated with respect to 4J. Substitution of equations (34H37) into this expression
furnishes a linear equation for the value of L,

{
2Xb3(1- 2v) sin 2cp +!Xb1sin 2cp [2(1 +v)(l + 21l)Z + IF] + }

GL + 2bz[fJ sin 2y sinz cp + X sin 2cp (1- 2v) - 4X sin 2cp (1 + v)ll]
-=

V {b1[(1+V)(1+21l)(1-2X)(bs+6rt.Zb7)-Xb4P]+} .
+ bz[b4 cos 2y+ 2Pb6 sin 2y+ bs(1- 2X)(1- 2v)- sinz cp
-12b7rt. z(1 + v)(l- 2X)]

(39)

The derivatives S'1' s~, J~ and B' can be obtained by substitution of equation (39) into
equations (34H37).

If the values of S1' S2' J 1 and B are known on one boundary of an inelastic region,
their values in the interior of such a region can be found from equations (34) to (39) by
forward integration. The starting values of S1' sz, J 1 and Bmust satisfy the yield condition,

(40)

and the determinantal equation, equation (30). Further, the forward integration is per­
mitted only when L < 0, as required by equation (28).

2.2 Inelastic shock fronts

The analysis in the previous subsection treated regions of finite extent, and the
additional possibility of infinitely thin regions, i.e. shock fronts, remains to be considered.
If such fronts exist in the present problem the equations obtained above should indicate
this by becoming singular, since at least one of the derivatives of the stresses must become
infinite at a shock front. Instead of searching for singularities it is better for a physical
understanding to demonstrate the existence and properties of shock fronts in general.
This general derivation automatically answers the question of stability of the fronts, by
proving that a front, where the stress rises with an arbitrarily steep slope, Fig. Sa, will
not disperse but propagate without change of slope.

Consider the basic equations (14H19), which apply to any type of wave propagation
in plane strain. To investigate the possibility of plane pressure waves without shear, the
y direction is selected as the direction of propagation. For such a wave, the shear r, the
horizontal velocity Ii and all derivatives with respect to x vanish, while for reasons of
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0-, f _ DIRECTION OF PROPAGATION

f(ct-y)

STEEP SLOPE

y

FIG.5a

0-, f

y

FIG.5b

symmetry ax == az. Since x, y, z are the principal directions, the stress deviators Sx and Sy
become Sx = S2' Sy = SI' Using the relation S2 = -isl' the yield condition (40) becomes

while equations (l4H19) furnish three relations

au l. 1· ~[ 2]
ay= 2GSI+9KJI+A SI- 2a J 1

1. 1· -[1 2]o= - 4GS 1 +9KJ I - A "2sI +2a J I

au aS I laJ I

Pat = ay +3 ay
where

(41)

(42)

(43)

(44)

K= ~G( 1+V).
3 1-2v

(45)

If a steep front, Fig. Sa, at which inelastic deformation occurs, is to propagate with a
velocity cwithout change of slope, it is necessary that

51 = ad(y-Ct) = ad(()

J 1 = ad(y-Ct) = a2 f(()

U= a3 f(y - Ct) = a3 f(()

(46)

(47)

(48)

where ( = y - Ct, while the values ai and care free constants, and f is an arbitrary function.
Since J I is necessarily negative, and the signs of the coefficients ai are still undefined, one
can select the sign of f without loss of generality, say

f > o. (49)
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The increase of IfIwith time requires then

f'<0

253

(50)

where the symbol I indicates derivatives with respect to (.
Substituting equations (46H48) into equations (41H44) and eliminating the velocity

iJ yields

(51)

(52)

(53)

If shock fronts of the type sought exist, these three equations must be satisfied for
arbitrary functions f, subject to the limitations of equations (49), (50) and subject to the
condition l > O. Equation (53) gives

(54)

Equations (51) and (52) permit nonvanishing values f, land f' only if the determinant of
the coefficients of f' and pelf vanishes, yielding after substitution of equation (54)

(55)

However, the result is valid if, and only if, l > O. Computing l from equation (51)
yields, after simple manipulations, the inequality

1 1-2v
1+---<0

")3 a(1 + v)
(56)

(57)

where the upper or lower signs in equations (54H56) are to be used consistently. The
limitations a > 0 and 0 :s; v < ! indicate that the lower sign never leads to a valid solution.
Using the upper sign one obtains the requirement

1 1-2v
a<--­

")3 1+ v

and the corresponding velocity

(58)
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The stresses 51 and J 1 at the front have the ratio

51 a l 2cx
J

l
= az = -/3 .

The function f being arbitrary, it may be selected as a step function,

f(y-it) = H(it- y)

as shown in Fig. 5b. The discontinuities Ll5 I and LlJ I in the stress history

51 = Ll5 I H(Ct- y)

J 1 = LlJ1H(Ct-y)

then satisfy equation (59) provided

Ll5 1 2a:

LlJ l -/3'
The corresponding velocity to be obtained from equation (48) is

iJ = LliJH(Ct - y)

where

1+2a:-/3

3pc

(59)

(60)

(61 )

(62)

(63)

(64)

(65)

Equations (61H65) give the relations for an inelastic shock front entering a stressless
region, a case which will be utilized in the construction of solutions in Section 3.

The above investigation of possible shock fronts was based on the premise that r = O.
The fact that inelastic shock fronts are impossible when r =I- 0 is demonstrated in [8,
Appendix A], so that the discontinuity described in this section is the only inelastic one
to be considered.

Summarizing, it has been demonstrated that, for values of a: and v which satisfy
equation (57), a plane pressure discontinuity will propagate with the velocity c given by
equation (58). In order to occur in the solution of the steady state problem, Fig. 4, the
front must be inclined at such an angle rjJ that the horizontal component of the velocity
c equals the velocity V of the load on the surface. The angle is obtained from equation
(58),

The principal stress at the front being normal to the front, requires

(66)

n
)' = 2'

n
() = rp-­

2
(67)

Further, the relation 52 = -JS1 at the front defines the value p, equation (32)

p = 3·0 (68)
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(69)

2.3 Regions and shock fronts without inelastic deformation

In a region where at the instant considered no inelastic deformation occurs, the strain
rates are defined by the purely elastic relations, equation (11), and the stresses are subject
to the inequalities

F =: l[si+S1S2+sDtl+aJl :::; o.}
J 1 :::; O.

In addition, the equations of motion, equations (18), (19) hold. To obtain the differential
equations, one could proceed in the same manner as in Section 2.1. However, it is not
necessary to do so, because the resulting differential equations must obviously follow
from equation (25) by making the following two changes:

(l) The last equation is to be omitted because it represents the yield condition F = 0,
which does not apply.

(2) To account for the change in the stress strain law from equation (8) to equation
(11), L = 0 is to be introduced into equations (25).

In this fashion the following four simultaneous differential equations are obtained.

-1 -1
1-2v

° S'I--
l+v

sin2 )' cos2 y 1_3X(I-2V) -sin 2y s'
l+v 2

=0. (70)

sin 2y sin 2y 2 sin 2y -2(1-2X) M'l

sin2 y-X X -cosz y -cos2y 0 (Sl -S2)O'

The equations are linear and homogeneous so that the derivatives of the stresses,
S'l' S2, J'I vanish, unless the determinant of equations (70) equals zero. In spite of the fact
that the coefficients in equations (70) contain y, the value of the determinant is independent
of this value. The determinant of equations (70) vanishes when X is a root of

4X(I-2X)[I+(1-2X)(I-2v)] = O.

Equation (71) has two significant roots,

I-v
X p =-­

1-2v

and

X s =t,

(71)

(72)

(73)

and one, X = 0, which may be shown to be trivial. Substituting the two roots X p and
Xs into equation (27) furnishes two locations

. -1{lJ[2G(1-V)J} . -1[CP]'Pp = n-sm V p 1-2v = n-sm 11

'Ps = n-sin-{~j(;)J= n.-sin-l[~J

(74)

(75)
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at which the determinant of equations (70) vanishes, where Cp, Cs are the velocities of P­
and S-waves, respectively. In any location 1J =/= 1Jp or 1Js the derivatives S'I' S2, J~ vanish,
so that the stresses must remain constant everywhere, except at the locations 1Jp and 1Js.

The angles 1Jp and 1Js are the locations of potential elastic P- and S-fronts, which may,
therefore, be part of the complete solutions to be obtained in Section 3. The following
pertinent details for these fronts will be required subsequently.
2.3.1 The P1'ront. Designating the changes in the various quantities at the front by the
symbol d, the discontinuities in the stresses aN' aT = a z (normal and tangential to the
front, respectively) and in the component UN of the velocity (normal to the front) are
proportional,

(76)

No other discontinuities can occur.
The changes daN and daT are of course restricted by the fact that the inequalities (69)

for the stresses must be satisfied on either side of the front. No general study of this
restriction is required, but in Section 3 it will be necessary to know if a P-front is possible
when the stresses and velocities ahead of the front 'Pp vanish. In this case the conditions
(69) are satisfied ahead of the front, F == J 1 == O. To check behind the shock, it is .noted
that the stresses daN and daT are not only the total stresses, but they are also the principal
stresses, daN ai' daT = (72' After computation of Sl and J 1, one finds two necessary
conditions for a P-front

(77)

1 l-2v
IX> ---. (78)- J3 1+v

A compressive shock front of arbitrary strength a 1 < 0 in the location 'P = 'Pp is there­
fore possible if, and only if, the inequality (78) on ex is satisfied. The angle y and the quantity
{3, equation (32), immediately following the front are

{3 = 3. (79)

Attention is drawn to the fact that the inequalities (78) and (57) which permit, respec­
tively, an elastic or an inelastic pressure discontinuity to enter a stress free region, are
mutually exclusive, but complementary. In other words, for any combination of IX and v,
one, but only one, of the two types of fronts can exist.
2.3.2 The S1'ront. At an S-front discontinuities occur only in the shear stress TN = TT = T
and in the tangential velocity itT' The changes are proportional,

. 1
dT : dUT = 1 : - .

pcs
(80)

In addition, the inequalities (69) must again be satisfied ahead of and behind the front.
Checking the situation if the region ahead of the front is stress free, equations (69) are
again satisfied ahead of the front. Behind the front the stresses are

T= dT, (81)



Moving step load on the surface of a half-space of granular material

The invariant J 2 may be written

J 2 = S~+SNST+S}+4T2

and, because in this last equation all stresses, except T, vanish, the condition

F =J 2 - a2Ji ::s; 0

257

(82)

(83)

is violated. Thus an S-front can not enter a stress-free region.
Some details about S-front locations where stresses ahead of the front do not vanish

will be required. Consider specifically the possibility of such a front at a point where the
equal sign in the first condition (69) applies ahead of the front,

F =J 2 -a2Ji = o. (84)

This indicates that the material is at the verge of inelastic deformation.
Let the shear stresses just ahead of the front, for qJ~- l, be i, and those behind the front,

for qJ~+), be T. The invariant J 1 and the deviators with respect to the Nand T directions,
SN and ST' respectively, are equal at qJ~-) and qJ~+). Noting that the equality (84) is satisfied
ahead of the front, it is clear that the inequality equation (83) requires

(85)

The largest possible change ~T = T-i occurs therefore when T = -T, In which case
equation (84) is satisfied also for qJ~+). It is useful to consider this case in terms of the
principal stress variables used in Section 2.1, i.e. using the angle y and the quantities J l'

Si and fJ as variables. Figure 6 shows the direction of the major deviator 81 ahead of the

FIG. 6

front at an angle y to the S-front. The state of stress ahead of the front, y, 81 and 82,

corresponds to the values of i, SN and ST which apply in this location. Behind the front
the state of stress is defined by T = - i, SN' ST' which stresses define changed values y, S l'
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S2' When computing these values by the conventional relations it is found that SI' S2'

being even functions of T, are necessarily equal to 51' 52' respectively. 1', being an odd
function of T, changes

I' = n-y. (86)

Therefore, a change in shear from r to T = - r at Ips does not change the values of the
variables 8 1, 82, J 1 or p, but only the values of the angles }' and fJ. The latter becomes

at Ip~+): fJ = Ips-y = Ips+y-n. (87)

These changes in ;' or eoccur if the stresses satisfy the equality (84) ahead of, and behind
the front.

3. CONSTRUCTION OF SOLUTIONS

In Section 2 a number of partial solutions were obtained from which the solution of
the complete boundary value problem is now to be constructed. Section 2.1 gives the
differential equations for the determination of the stresses and velocities in inelastic regions;
from Section 2.3 it is known that all unknowns in elastic regions are constants, except for
discontinuities of a prescribed nature at the locations Ips and Ipp. In addition, there may
be a shock front with inelastic deformation at a location p.

As mentioned in the last two paragraphs of the introduction, steady-state problems of
the type studied here need not have unique solutions. However, it may be possible to
eliminate excess solutions by specifying that the steady-state solution desired should be
the asymptotic solution, if any, of the problem of an expanding load (Fig. 7) applied on a
half-space initially at rest. This additional condition is invoked here and furnishes a vital
boundary condition for the solution through the reasoning which follows. It is known
that the partial differential equations of the transient problem, Fig. 7, are hyperbolic in

v •
EX PANDING lOAD

FIG. 7

II V

elastic and in inelastic regions. The characteristic velocities U under elastic conditions are
U = Cp and U = cs, while those in the inelastic case are functions of the stresses, but
subject to the inequality U < Cpo The hyperbolic character of the differential equations
and the inequality have been demonstrated in [9] for a general class of elastic-plastic
material governed by a plastic potential. This result applies here. The largest characteristic
velocity being less than Cp , one can conclude that, in the non-steady-state superseismic
problem, Vjcp > 1, Fig. 7, all unknowns vanish ahead of a front inclined at an angle </Jp
corresponding to Cp. so that one has a boundary condition for the steady-state problem

(Ji = Si = it = i, = o. (88)
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Additional boundary conditions apply at the loaded surface where the pressure
PoH(Vt-x) is applied. At this surface one of the two principal stresses must be vertical
and equal to - Po, so that there are two alternative boundary conditions. Either

or

7r
y=-

2

y = O,n.

(89)

(90)

It is easily seen that the nature of all equations in Section 2 is such that Po will appear
as an external factor in the solutions for the stresses and velocities, while the non­
dimensional quantities e, p and yare independent of Po. This simplification is due to the
homogeneous nature of the plastic potential, equation (4), and would not apply if equation
(1), allowing for cohesion, is specified. Therefore, only the case Po = 1 need be considered,
so that equations (89), (90) become

or

a 2 = S2+-!J 1 = -1,

n
}' =-

2

y = 0, n.

(91 )

(92)

At this point it must be stressed that no uniqueness or existence theorem for transient
problems is available for elastic-plastic materials. Although the boundary condition (88)
eliminates certain excess solutions of the steady-state problem, Fig. 8, which clearly are
not aSYlT\ptotic solutions of the transient problem, Fig. 7, the remaining solutions of the
steady-state problem may still not be unique, because the original transient problem may
not have a unique solution. In constructing solutions it is therefore vital to consider all
conceivable possibilities.

PROGRESSING LOAD

FIG. 8

In the expectation that there should be a continuous transition in character and in
the numerical values of the solution, the latter will be considered as functions of the basic
physical parameters v, ex and of V/c p • The concept that the character of the solution should
change smoothly as a function of the parameters is extremely helpful in the formulation
of the solutions. As a starting point one can explore the existence of a range in the above
parameters where the elastic solution applied and from there continue, step by step, into
further ranges.

Applying this gradual approach, one arrives at the conclusion that the occurrence of
discontinuous fronts at the transition from the stressless to the stressed state in the elastic
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situation will also apply in the more general case, at least for values of the parameters
close to those where the elastic solutions are valid. The first attempt will therefore be the
construction of solutions with an initial discontinuity at the arrival time, and the possibility
of continuous behavior at arrival will be considered subsequently to demonstrate unique­
ness, and also in situations where the assumption of an initial discontinuity does not lead
to a solution.

In accordance with the above approach, one expects that the properties of the initial
discontinuity will govern the character of the solution as a function of the parameters v,
(X and V/cp • The existence and the nature of the initial discontinuities depend on v and ,x
only, so that these two parameters playa more important role than V/cp, and a preliminary
classification of the ranges can be based on v and (X only. In the permissible range for these
parameters, 0 :s; v :s; t and 0 :s; a :s; I/.J 12, there is according to Section 2.3 a Range I,
Fig. 9a, defined by

, 1-2v
~3a>~­

- I+v (93)

where an elastic P-front, but no other discontinuity can enter a stress free region, while
for

j 1-2v
3a<~~

I+v
(94)

only a compressive discontinuity with inelastic deformation may enter a stress-free region.

RANGE I

RANGE ]I

0.5 11 --L..M~ 11= 1/2 -----l

I
I
I
I
I
I

0.3

0.4

0.2

I
MAX a=I/.JI2--1

I
0.1 0.2 0.3

a

FIG. 9a. Principal ranges.



Moving step load on the surface of a half-space of granular material 261

II

RANGE IO

J...
2

I
"4

--------------,
I
I
I
1

I
I

RANGE n b

0.250.200150.100.05

I8,.....-------0---->-----0

o NUMERI GAL RESULTS
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11

RANGE IO

------------,
I
I
I
I
I
I

...L
2

....L -t--......;:....=-----o---.::llIo,.......-----,
:3

...L+--------<:l----o-----Q
4

RANGE nb

ex

1ffi"20250.200.150.100.05

-t---------6----o---o

o NUMERICAL RESULTS
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The total range where the latter inequality applies is subdivided in Ranges II and III,
depending on whether the velocity c of the inelastic front is larger or smaller than the
velocity Cs of elastic shear waves, respectively. Range III, where c ~ cs, applies if

3
J3(X~-2+ J[2(l+v)] (95)

while Range II, c~ cs, applies if equation (95) is violated. The reason for this division
will be seen later.

3.1 Range fa

As indicated above, the first step in the construction of solution is the determination
of the range, designated Range la, in which entirely elastic solutions exist. In such a
solution a P-wave enters a stressless region and an entirely elastic solution is possible, if
at all, only in a range entirely within Range I, Fig. 9a. The stresses in an elastic half-space
due to a superseismically traveling uniform surface pressure are given in Appendix A.
There is a uniform state of stress between the P-front and S-front, and again a uniform,
but different state of stress between the S-front and the surface, Fig. 10. The two uniform
states of stress must satisfy the inequalities (69)

F ~ 0, (96)

SURFACE

01 RECT 1ON OF OJ

S-FRONT

FIG. 10. Configuration for range la.

There is no need to check the validity of these inequalities in the region between the P
and S fronts because this has actually been done in Section 2.3 where the existence of the
P-front in Range I was proved. However, equations (96) must be considered for 7T. > ffJ > ffJs.
At the S-front a state of pure shear is added to the state of stress for ffJ < ffJs. This can not
change the first invariant J 1 so that only the condition F ~ °requires checking.

Substitution of equations (138), (139) from Appendix A into this condition results in
the inequality

2 1(1-2V)2[COS2
2(ffJS-ffJP) IJex >--- +-

- 4 l+v cos22ffJs 3
(97)



264

where

H. H. BLEICH, A. T. MATTHEWS and J. P. WRIGHT

. _1{lj[2G I-V]}qJp = 7[-Sm - ---
V p 1- 2\'

(98)

(99)

The inequality (97) defines Range Ia where the response is entirely elastic. The range is a
function of Poisson's ratio and of the value V/c p > 1, and its boundary can be found by
using the equal sign in equation (97). Figures 9b-d show that these boundaries end at the
one between the principal Regions I and II, the endpoint being defined by the relation

(1- 2\,)2

(I - \')(1 - 3\')
(100)

Figures 9b-d show Range Ia covering nearly all the Range I, while in Fig. ge Range Ia
actually covers all of Range L It may be shown that for V/c p < 1·061 Range Ia covers all
of Range L The stresses in Range Ia are entirely elastic and are given by the simple relations
listed in Appendix A.

3.2 Range Ib

It was found above that entirely elastic solutions exist only when the inequality (97)
is satisfied. The remainder of Range I, i.e. the range

(101)

will be designated as Range lb. In this range the solution can no longer be entirely elastic
and must therefore contain at least one location with inelastic deformation.

Using the expected continuity of the character of the solutions as a guide, the solution
in this range ought to start again with a discontinuity which, according to Section 2.3,
can only be an elastic P-front located at ({Jp. Using equation (76) for the stress changes at
the front, one finds that for* ({J = ({JV) the inequality F < 0 is satisfied, provided the
special case .J3a = (1- 2v)/(1 + \') is excluded for separate consideration. Having recog­
nized that the solution must contain an inelastic region, where F = 0, a further elastic
stress change must occur, which is possible only at the S-front. The appropriate change in
the state of stress at the S-front has been obtained in Appendix B, in terms of the as yet
unknown stress discontinuity 11(J at qJp, as follows:

For qJ~+) ~ qJ ~ qJk-):

(J I = 11(J, fJ = 3,
7[

1-2' (102)

* The symbol (+) in I{J~+) indicates a value infinitesimally larger than I{Jp.
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while for ({J = ({J~+):

(1-2v)(P+ 1)
S I = 6(1- v) ,10-

The quantity J is obtained from

3
cos 2<5 = 1i cos 2( ({Jp- ({Js)

and is subject to the inequality

265

(103)

(104)

(105)

(106)

(107)

(108)

({Js ~ 1151 ~ ({Js- ({Jp. (109)

The special case ~3cx = (1 - 2v)/(1 + v) remains to be discussed. In this case the yield
condition F = 0 is satisfied already for </> = </>~+), so that the possibility of an inelastic
region no longer requires a shear front at </>s. However, a change in shear leading again
to a state with F = 0 is still possible. For either possibility equations (103H108) apply.
The special case simply means that one of the two values (}(</>k+)) is equal to e(</>~+)) as
given by equation (102).

The results obtained so far, and further steps required, are best discussed in terms of
the angle () in various locations, illustrated in Fig. 11. The direction of the principal stress
between the P- and S-fronts according to equation (102) is normal to the P-front, while
for ({J> ({Jk+), equation (107) defines e. Because of the inequality (109), ()(({Jk+)) is less than

SURFACE

INELASTIC REGION

ALTERNATIVE DIRECTIONS

OF OJ

tV

FIG. 11. Configuration for range lb.
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71:12 but more than 0, regardless of the sign of J. According to Section 2, there is no further
possibility for a change in 0 as required to arrive at the surface value 0(71:) = n12, (0 or n),
except one or more inelastic regions for ffJ > ffJs'

Using the values of [J, J I' SI' Y and edefined by equations (l03H107) the results of
Section 2.1 are now to be used to find and determine the history of the stresses and
particularly of the angle O. If a region can be found during the forward integration where
either of the values e= nl2 (or 0, or 71:) is obtained, the integration is terminated. From
the point of termination to the surface an elastic region of no change is selected such that
the surface condition for 0 is then satisfied. During this integration the unknown value
dO" in equations (104), (105) is a common factor in all stresses, so that the integration will
give a principal stress at the surface which contains this factor. It is finally selected to
satisfy the boundary condition, equation (91 or 92), 0" 1,2 = - 1.

The use of the solutions derived in Section 2.1 for inelastic regions is quite straight­
forward. From the values of [J, ;' at ffJ~+), potential starting points ffJl of inelastic regions
are located as roots of the determinantal equation (30). Next it must be verified that GLIV,
equation (39), is negative. If this is so, equations (34H37) are used to determine the solution
by forward integration, continuously checking the sign of GLIV. The integration can be
continued until GLIV changes sign, but may be stopped at any desired location ffJ2' When
an angle () = 71:12 (or 0, or n) for the direction of the principal stress is obtained, a solution
to the problem has been found.

The configuration was successful in all cases considered and led to just one solution
of the problem. The upper sign in equation (107) and the case e= 71:12 furnished the
solution, but it is suspected that the other sign may apply when Vlcp > 1 is very close
to unity. The matter of possible alternative configurations which might lead to solutions
is discussed later in this section.

It is noted that Range Ib, which does not occur at all if Vlcp < 1'061, applies even for
other values of Vlcp only in a minute portion of the overall range of v and a, as can be
seen from Figs. 9(b-d).

3.3 Range IIa

According to the definition of ranges at the beginning of this section, an initial inelastic
discontinuity, but no other, is possible in Range II. Further, in this range, the location if
of this discontinuity, defined by equation (66), is such that

if < ffJs' (110)

Range II, which is the one of major interest, is defined by the combined inequalities (94,
95),

3 J 1-2v---·---2 < 3(;( <--
J[2(1 + v)] 1+ v

(l11 )

In that portion of Range II which adjoins Range la, Figs. 9(b-e), one expects that the
solutions after starting with an inelastic front of discontinuity at if will remain entirely
elastic. The range in which such solutions apply and the values of the stresses are obtained
in Appendix C. This range is designated Range IIa, and the stresses are found in closed
form, the configuration being shown in Fig. 12.
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FIG. 12. Configuration for range IIa.

The discontinuity /1(1 in the normal stress at the front is

/1(1 = -cos 2({Js
(1-R)cos2(~-({Js)+(1+R)cos2 ({Js-1

where

FRONT

267

(112)

(113)
- 1-aJ3
R = .

1+2aJ3

The principal stresses and their direction between the inelastic front and the shear
front are

(11 = /1(1

(12 = (13 = R/1(1

while between the S-front and the surface

({J ~ ({J~+):

(114)

(12 = - R,

0='2
2

where

(115)

R = -1-(1 +R)/1(1

and (13 is the principal stress in the z direction.
The solution applies if the inequality

(
1-2V)(1 + 2aJ3)2 - 36a2 cos2 ({Js ~ 6-- cos2 ({Js
l+v

(116)

(117)
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is satisfied. The boundary separating Region IIa from the remainder of Region II,
designated Region lIb, is found by using the equal sign in the above relation. Figures
9(b-e) show typical curves for some values of Vlc p• These figures indicate that Range IIa
covers only a quite small portion of Range II, except in the atypical case when Vlc p is
only slightly larger than unity, Fig. ge.

3.4 Range IIb

In Range II, but outside Range IIa, the solutions are expected to start with an inelastic
pressure front at ,p, but additional inelastic regions must now occur. In the vicinity of the
boundary towards Region Ib, continuity requires similar configurations, as shown in
Fig. 13. Behind the inelastic front the stresses will be uniform with a shear front at qJs,

and a region of inelastic deformation in a location qJs < qJ < n. The discontinuity in shear
M must be such that the yield condition F =:0 0 is satisfied for qJ Z qJ~+I.

SURFACE

5 - FRONT

t =~T OR T =0

• v

FRONT

FIG. 13. Configuration for range lib.

However, at points remote from the boundary between Regions Ib and lIb alternative
configurations might occur and must be considered as possibilities in the numerical
analysis. In the configuration shown in Fig. 13 the possibility ~r = 0 could furnish a
solution, or inelastic regions may exist in locations ,p < qJ < qJ~-I, as shown in the
alternative Figs. 14 and 15, where shear discontinuities ~r +0, may occur, or not, ~r = O.

FIG. 14. Alternative configuration.
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SURFACE

INELASTIC

FIG. 15. Alternative configuration.

Further, the configuration shown in Fig. 15 may have a subrange where the discontinuity
L\r is such that elastic conditions F <: 0 are created and, therefore, constant stresses occur
for ffJ > ffJ~+). Disregarding, for later discussion, solutions without initial discontinuity,
but allowing inelastic regions to split, this exhausts all possibilities to be studied. In all
cases considered the numerical analysis by computer furnished only solutions having the
configuration of Fig. 13. The search for roots ofthe determinantal equation, giving starting
points of inelastic regions never furnished a root for ¢ <: <Ps.

The following statement summarizes the situation. The initial change from vanishing
to nonvanishing stresses occurs at an inelastic front with an as yet undetermined com­
pressive discontinuity L\(J in the principal stress (J l' This front is followed by a region of
constant stress, for ffJ~-) > ffJ > ijJ( +) :

(J 1 = L\(J

p=3

o=~
2

(118)

For locations ffJ > ffJs there are two alternatives. If no discontinuity in shear occurs,
M = 0, equations (118) apply also for ffJ = ffJ~+), while the angle y is

(119)

However, if a shear discontinuity, M +- 0, occurs, equations (86), (87) give, using
Y= ffJs- ffJ+ n/2,

for ffJ~+):

(J 1 = L\(J

p=3

n
y=-

2

(120)
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Equations (120) and the alternative values for L\r = 0 are the starting points for numerical
integrations which are to be carried out in the manner described for Range lb.

3.5 Search for inelastic solutions without initial discontinuity

In Ranges I and II solutions were constructed where the initial change, from vanishing
to nonvanishing stresses, occurred as a shock, either elastic at ({>p, or inelastic at cp. While
the principle of the continuity of solutions makes the solutions obtained plausible, it is
necessary to investigate if solutions which start smoothly exist.

The differential equations in elastic regions permit definitely no smooth change in
stress for superseismic velocities V, so that only the inelastic case is considered.

If a smooth inelastic solution starting from vanishing stresses in a location 'Po exists,
an asymptotic study of the appropriate differential equations for a j = Sj = J 1 -+ 0 in the
vicinity of 'Po must describe this solution. In order to be physically sensible, the angle y
in the vicinity of 'Po must be well behaved and may be considered a constant in the range
'Po :s; 'P :s; 'Po + G where E is small. The quantity GL/V < 0 must not vanish, otherwise the
region is not inelastic as postulated. There are, however, two possibilities for the behavior
of GL/V. In the limit 'P -+ 'Po, the function GL/V may be finite and well behaved, in which
case it may be considered a constant near 'Po; alternatively, GL/V may, in the limit, be
infinite.

The first possibility, where GL/V in the limit may be replaced by a constant is easily
proved to be impossible. Following the previous reasoning in Section II, solutions in an
inelastic region exist only if the determinant of equations (25) vanishes, in which case
four of the five unknowns will depend on the fifth. In the limit Sj' J 1 -+ 0 the last equation
(25) becomes trivial, 0 == O. The last terms of the other equations vanish, because GL/V is
finite and products of GL/Vand Sj or J 1 in the limit are therefore zero. The remaining four
equations are then identical with the four equations (70) in the elastic case. They have
nonvanishing solutions only when 'Po = 'Ps or 'Po = 'Pp. However, the yield condition,
F = 0, represented by the last equation (25), which became trivial, may now not be
satisfied and must be checked. In the vicinity of Sj' J 1 -+ 0, the ratio of these stresses must
obviously be the same as at the P- or S-front, equations (76) and (80), respectively, obtained
from the same equations. Based on the discussion of the P- and S-fronts, one finds easily
that the requirement F = 0 is not satisfied, except in the special case when the values (I:

and v are exactly on the boundary between regions I and II, where rjJ == 'Pp. However, in
this case one finds GL/V == 0, and no inelastic solutions whatsoever are therefore possible
when GL/Vat 'Po is finite.

The case where IGL/VI-+ 00 as 'P -+ 'Po remains to be discussed. The first question
concerns the possibility of !GL/VI -+ 00 and conditions for the occurrence of such a
singularity. If such a point exists for some values of y and of the ratios of Sj and J l' when
the latter are small, -+0, then IGL/VI -+ 00 would also occur for the same ratios if Sj and
J 1 are finite. Equations (34), (35) and (37) which apply, would then give infinite values for
one or more of the derivatives sj, J'I' The possibility IGL/VI-+ 00 exists therefore only in
locations where an inelastic front of discontinuity may occur and the conditions required
are those for such a front. Using the results of Section 2.2 for inelastic discontinuities, no
smooth solution can exist in Region I, because no inelastic shock front is possible. In
Regions II and III where such a front may occur at (j), a solution of the type sought may
exist, starting at 4>0 = (j); the necessary initial values of the state of stress being again
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(121 )

If such an inelastic solution in a region c/J ~ (f> of finite extent actually exists, the
determinantal equation (30) must be satisfied for c/J > (f>. This is necessary because the
previous reasoning only implies that this equation is satisfied for c/J = (f>. To explore this
point an asymptotic expression for equation (30) is obtained by substituting

rp=iJ+e

P=3+1t.

n
y = -+'7

2

(122)

where e, It. and '7 are small quantities. Retaining the lowest order terms in the new variables
one obtains the determinantal equation in the asymptotic form

bs'72 _It.2 = bge (123)

where the quantities bs and b9 are functions of v, a and Vjcp , given in Appendix D. The
quantity b9 is always positive, while bs may be positive or negative, changing the character
of the equation radically.

In Range II, i.e. when the inequality (111) applies, bs is negative so that the equation
has real roots only for negative e. While an inelastic region can exist for rp < iJ ending at
iJ with vanishing stresses, no such regions can exist for rp > iJ, i.e. in the location of interest
here. The solutions in Ranges I and II with an initial discontinuity previously considered
are the only ones possible.

In Range III, where the inequality (95) applies, one finds bs > 0, so that the deter­
minantal equation (123) has real roots for e > 0 as necessary for solutions without initial
discontinuity in stress. The final condition, GLjV < 0, is also satisfied, because the stress
ratios in this region are initially equal to those for the inelastic front, where GLjV < O.
All requirements are therefore satisfied and it is concluded that in Range III, and only in
this range, an inelastic solution without stress discontinuity exists. The details of its
determination are given in Appendix D.

3.6 Range I II

According to the definition of ranges, an inelastic shock front in the location rp IS

possible, and one can attempt to construct a solution starting with this discontinuity in
analogy to Range II. However, the computational search for inelastic regions, for rp > iJ,
was unsuccessful, and the boundary conditions on the surface can not be satisfied without
such an inelastic region. While the determinantal equation (30) is nonlinear and too
complex to prove the nonexistence of roots in general, the approximate equation (123)
furnishes a partial proof, as there is obviously no root It. = '7 = 0 for e > O.

The impossibility of finding a solution with an initial discontinuity is, however, very
satisfactory because the previous subsection and Appendix D indicate that in this range
a solution exists which starts at rp = iJ without discontinuity. Because of their singular
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character the differential equations at and near the starting point can not be solved by
the numerical procedure used in the other ranges. Therefore, the asymptotic solution
obtained in Appendix 0 must be applied for a small range lfJ ~ rP, until the solutions are
sufficiently well behaved to return to the numerical integration of the differential equations
obtained in Section lIa.

To start the solution, equation (175) gives /1 - 0 so that in the proximity of ¢ = ¢
the value of /3 becomes approximately

while

/3=3+/1-3 (124)

(125)
rr

Y = 2+'1

where the small quantity I'll is inherently larger than the neglected value 1/1/. Equation
(176), and a similar expression for the principal stress 0" I' contains an arbitrary constant
Co' If lfJe = rP +Ee is the end point of the asymptotic region, the value of the principal
stress 0" 1(lfJe) may be used as the arbitrary constant instead of Co' Choosing a value 'I = 'Ie'
small, yet large enough for the numerical integrations to work thereafter, one searches
for the corresponding value lfJe where the determinantal equation is satisfied by the
combination of /3 = 3, Ye = 'Ie+rr/2 and lfJe' The principal stress O"I(lfJe) at this point can
be made equal to unity. From this point on integration proceeds exactly as in the other
ranges. Due to the fact that equation (174) defining 'I has a ± sign, it is necessary to include
the two possibilities ± '10'

The procedure outlined was found to be successful, one, and only one, of the integra­
tions for ± 'Ie furnishing a solution. The stresses in the interval rP to lfJe increase as (lfJ - rpt·
To obtain their distribution the exponent n can be obtained from equation (177). n is a
very small positive number, of the order of 1/100. The configuration of solutions in Range
III is shown in Fig. 16.

FIG. 16. Configuration for range III.

The occurrence of solutions with and without initial discontinuity in stress, does not
break the continuity in the character of the solutions. Even for the continuous solutions
the derivative of the stresses at rP is infinite, as at a discontinuous front, and the numerical
results indicate that the change in stress in the asymptotic region due to the small exponent
n is so rapid, that this region is practically indistinguishable from a discontinuity, see
Fig. 17.
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3.7 Numerical analysis

In Ranges Ib, lIb and III a numerical search for inelastic regions, and subsequent
numerical quadratures are required. In Section 2 the basic equations have been written
in a very abbreviated form, somewhat concealing the complexity of these relations. The
solution of these equations by hand computation is impractical, and the computations
were made on an IBM 7094. A common program was devised, allowing for the different
configurations which may occur.

The inelastic regions are always quite narrow as functions of <p, only a few degrees,
and become even narrower as V/c p becomes large. It was therefore necessary to vary the
intervals of cp in the search and in the quadratures. For V/c p $ 2 intervals of 1/500 rad
were used, while for V/c p = 5 intervals of 1/10,000 rad were selected.

The results obtained are discussed in Section 4.

4. NUMERICAL RESULTS AND CONCLUSION

4.1 Results

The effects of a step pressure progressing with superseismic velocity V > C p on a
half-space have been obtained for an elastic-plastic medium subject to the yield condition
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(4), representing an inelastic material governed by internal Coulomb friction. The solutions
depend on the elastic material parameters E and v, and on the additional parameter
1: < J(1/l2) in equation (4). ,1: is related to the angle <1> of internal friction, using equation
(10) of Ref. [6], 3'1

sin <1> =. 2 . ( 126)
~(l-3(1: )

In spite of the lack of a general uniqueness and existence theorem, one, and only one
solution was obtained for each combination of material parameters, surface load p, and
velocity V/c p > 1 which was considered. One finds, however, radically different con­
figurations, depending on the values of the nondimensional parameters v, (1: and V/c p •

The ranges in which the various configurations apply have been designated by I, II and
III, where Ranges I and II have been subdivided into Subranges a and b. The values of the
parameters v and ex alone determine which of the Ranges I, II or III applies in a particular
case, as shown in Fig. 9a, while the subdivision into a or b depends on the value of V/c p ,

typical cases being shown in Figs. 9b-e. These figures show that Ranges Ia and lib cover
most of the total range in v anda:, the other ranges being of very limited applicability.

Range Ia gives entirely elastic solutions, known from Ref. [1], and is not further con­
sidered.

The parameter IX is inherently restricted, IX ::;; 1/~12, but sensible values for the angle
<1> of internal friction, equation (126), permit a further limitation to the range 0·10 ::;; ex ::;; 0·20.
Numerical results were therefore obtained, as indicated in Figs. 9b-d, for combinations
of V/c p = 1'25,2,5, v = 0, 1/8, 1/4, 1/3, and a: = 0,10,0'15,0,20. The values ex selected
cover the range sin <1> = 0·3--0·7. Except for two points which fall in Range IIa, all these
combinations are in Range lib. For completeness the result for one case in Range III,
v = 0, IX = 0'05, V/cp = 2 was also obtained.

Figure 18 shows a typical variation of the principal stress a 1 and of the angle e in the
major Range lib. There is a discontinuous rise in the principal stress a 1 at the inelastic
front, followed by a discontinuity in direction e, but not in magnitude of a l' at the S-front.
There is further a minor increase in a 1 in the inelastic region combined with a change in
direction, e. For unit step pressures, Po = 1, Table 1 gives the values of the principal
stresses ai' a2' a 3' and of the angle e, and the locations of the fronts for all cases considered,
which fall into Range lib.

Figures 19a, b show al and 8 for the two cases, v = 1/3, IX = 0,10, V/cp = 1·25 and
2,0, which fall into Range IIa. In these cases the initial stress rise is again at the inelastic
front, rp = (p. There is a change in a land eat the S-front, but there are no further inelastic
regions, and no further changes in a 1 or e. The solution in this range does not require
numerical integrations, but is entirely in closed form.

Range III is only of limited interest, because it applies only for very low angles <1>,

sin <1> < 0,21, but a typical case is shown in Fig. 17. There is no discontinuous front, the
solution starts smoothly at cP = ¢, but the principal stress a 1 has a vertical tangent and
rises extremely rapidly, and the situation is practically the same as at a discontinuous front.

4.2 Effect of cohesion, k t 0
If the more general equation (1) for the plastic poteRtial is used, instead of equation

(4), the differential equations for inelastic regions and their solutions derived in Section
2.1 remain valid. However, the configurations of the complete solutions found in Section
3 change, because of the different yield condition. The nature of these changes can be
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predicted from the available solution [5] for a von Mises elasto-plastic material, for which
equation (1) applies with k =1= 0, but ex = O. The most general configuration for the latter
material is according to Fig. 20. The solution always begins with an elastic P-front, has
an S-front, and may have two (or less) inelastic regions of finite thickness as shown. No
plastic shock ever occurs. The arguments used in [5] to obtain the configuration shown
in Fig. 20, hold equally for the more general case when the plastic potential (l) applies,
and one can predict therefore that the solutions for the latter case must have configurations
covered by Fig. 20.

The transition from the configuration shown in Fig. 20 to those found in the present
paper requires consideration of a limiting process. The general solution for k =1= 0, is a
function of the ratio Polk. In the present solution it was assumed Po = 1, k ...... 0, so that
Polk ...... 00. Consider as a typical example the situation for Range lIb where the configura­
tion, Fig. 13, must follow from the one in Fig. 20 when Polk --lo 00. In the configuration
according to Fig. 20 the stresses between the P-front and the first plastic zone must be of
the order k, i.e. the stresses are quite small compared to the surface load. To reach the
large surface value Polk, large changes in the stresses must occur somewhere in the range,
¢p < ¢ < 1r. This can happen only in one of the plastic regions. For large values of Polk
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TABLE I. RESULTS IN RANGE lIb

Location

At B Band C C

Vic" v ifs (\ <p* !,Dr !,D~ -(J2 -(J3 0* -(JI -(J2 {}*

~ (J 3

0·10 142·84 146·05 157·90 0'5788 0·6586 58·26 0·8111 0·4981 52·80
0 145·55 0·15 138·79 146·73 156·55 0-4352 0·5523 62-31 0·7950 0·3872 48·79

0·20 135·40 147·21 155·40 0·3202 0·4677 65·70 0·7881 0·3043 45'40
~_.~-----------_.~-~--~-

0·10 137·51 150·41 157·71 0-5804 0·6560 69'32 0·8987 0·5519 47'51
1·25 1/8 148·42 0'15 133-47 150·96 156·51 0·4424 0·5411 73-37 0·8791 0·4282 43-47

0·20 130'52 151·21 155'50 0·3346 0·4467 76·32 0·8794 0·3395 40·51
----

0·10 131·53 156·15 158·26 0'5973 0·6326 83-46 0·9641 0'5920 41·53
1/4 152·49 0'15 128-42 156·27 157·29 0-4733 0·5016 86·57 0·9743 0-4746 38·42

0·20 127·06 156'01 156·58 0'3753 0·3972 87·92 0·9813 0·3789 37·06

0·10 15H2 159·41 164·01 0'5960 0·6342 70·77 0·8954 0·5498 6H2
0 159·30 0·15 155·68 159·55 163·17 0·4615 0·5155 72-91 0·8943 0·4356 65·68

0·20 153·97 159-64 162'53 0·3547 0·4206 74·62 0·8955 0·3457 63·97
---_._----~

0·10 155·03 161·35 164·03 0'5979 0·6319 76·76 0·9441 0·5797 65'03
2·0 1/8 160·89 0·15 153·03 161·44 163·43 0·4662 0·5098 78·76 0·9410 0·4584 63-03

0·20 151-63 161·47 162·99 0'3622 0·4118 80·16 0·9409 0·3633 61·63

0·10 152·10 164·06 164·97 0·6053 0·6233 84·34 0·9791 0·6012 62·10
1/4 163·22 0'15 150·68 164-04 164·62 0·4776 0·4969 85·76 0·9799 0·4773 60·68

0·20 150·08 163-95 164·38 0'3760 0·3965 86·36 0·9801 0·3784 60·08

0·10 171·31 171·88 172-54 0·6105 0·6177 82-43 0·9703 0·5958 81·31
0 171-87 0'15 170·52 171-89 172·30 0'4823 0·4920 83·22 0·9761 0·4754 80·52

0·20 169·89 171·89 172-18 0'3805 0·3918 83-85 0'9789 0·3779 79·89
_"_______•• ".___ o•• __ o_'oc_

0·10 170·28 172-51 172-78 0'6111 0·6171 84'67 0·9887 0'6071 80·28
5'0 1/8 172-48 0'15 169·55 172-51 172-69 0·4834 0·4908 85·41 0·9889 0·4817 79·55

0'20 169·04 172-51 172-64 0·3820 0·3903 85·91 0·9893 0·3820 79-04

0·10 169-21 173-42 173·50 0'6125 0·6156 87·53 0·9960 0·6116 79·21
1/4 173·37 0·15 168·70 173·42 173-47 0'4854 0-4888 88·03 0·9961 0·4852 78·70

0·20 168·49 173-41 173-45 0·3842 0·3879 88'25 0·9961 0·3846 78·49

1/3 174·26 0'10 168·61 174·33 174·33 0'6140 0·6141 89·91 0·9999 0·6140 78·61

* In degrees.
t In this location O"t = -I, (} = 90°.
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extremely rapid and large stress changes were found, [5], for the von Mises material near
the location iP, which corresponds to the location of the inelastic shock front in Fig. 13.
This indicates that the configuration of the latter figure is a limiting case of that in Fig.
20, in which the stresses ahead of the first plastic region go towards zero in the same
manner as k, while the plastic region near iP degenerates into an infinitely narrow region,
i.e. into a plastic front. The situation in other ranges can be explained similarly.

It is interesting to note that the numerical solution for the von Mises material en­
countered numerical difficulties if Polk ~ 1, because stress gradients near ¢ = (j) become
extremely large. To overcome these difficulties asymptotic solutions near ¢ = (j) were
obtained in [5]. The solution obtained in the present paper for the Coulomb material for
k --+ °are the corresponding, but much more complex asymptotic solutions for Po ~ k
for a material with the plastic potential (1).

There is no difficulty in obtaining the numerical solution for a =1= 0, k =1= °from the
relations derived in the paper using the configuration developed in [5]. However, due to
the dependency on three parameters a tabulation of the results would become quite
lengthy.
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APPENDIX A

STEADY-STATE SOLUTION FOR AN ELASTIC HALF-SPACE

As background for Section 3, the details of the solution of the steady-state problem for
an elastic half-space are derived. The values of the stresses in Cartesian coordinates could
be obtained by integration from Ref. [1] and the desired principal stresses could be
computed. However, it is just as easy to obtain the latter directly from the knowledge of
the location of the shock fronts ipp and ips in Fig. AI, coupled with the necessity of uniform
stresses for 'Ps > ip > ipp and IT. > ip > ips. The values 'Pp and ips depend on the velocities
of the fronts given by equation (98) and (99).

Designating the principal stresses in the region ips > ip ~ ipp by aI' a2 and a3 == a z

it follows from equation (76) that

(127)

SURFACE

FIG. At
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(129)

(128)

where the jump dO" remains to be determined. The direction of (j 1 makes an angle (qJs - qJp)
with the normal N to the S-front. The normal stress O"N' and the tangential stress O"T with
respect to the S-front in the x-y plane can be expressed by the principal stresses (jl and

0"N = dO" [cos2
(qJs - qJp) + 1~ v sin2

(qJs - qJp)J

O"T = dO" [sin2
(qJs - qJp) + 1~ V cos2

(qJs- qJp)J .

In the region n 2:: qJ > qJs the principal stresses are 0"1' 0"2 and 0"3 == O"z. The surface
condition requires that 0" 1 = - 1 be vertical, making an angle (n - qJs) with the normal to
the shear front. The normal and tangential stresses (with respect to the S-front) are therefore

where

O"N = - [cos2 qJs+R sin2 qJsJ

O"T = -[sin2 qJs+Rcos2 qJsJ

(130)

(131)

(132)

There being no discontinuity in the normal and tangential stresses at a shear front,
O"N and O"T in equations (128H13I) can be equated and give two simultaneous equations
for dO" and R. The stresses 0"3 and (j3 in the z direction must also be equal, 0"3 = (j3' Using
the abbreviation

(133)

the discontinuity at the P-front for a unit surface load becomes

(134)

In the region qJ > qJs the principal stresses are

while the invariants become

(1 + v)
J 1 = -~cos2qJs

J - 1 cos2qJs (l-v+v
2

) 22
2 - - N + 3N2 cos qJs .

(135)

(136)

(137)

(138)

(139)
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It is noted that rpp and rps are functions of v in such fashion that N for V/cp > 1 is neces­
sarily positive, so that the condition J 1 < 0 is always satisfied. However, the yield
inequality gives a condition on iX, equation (78) in the text.

APPENDIX B

ANALYSIS FOR RANGE Ib

In this range discontinuous elastic stress changes occur at the P- and S-fronts so that
the combined effect satisfies the yield condition at rp = rp~+I. The following derives the
required details of the state of stress for rp ~ rp~+ I.

Using an approach similar to that in Appendix A, the stresses in the region
rp~-l ~ rp > rp~+l are given by equations (127), and the normal and tangential stresses
with respect to the S-front by equations (128), (129). The principal stress 0"1 for rp = rp~+l

will, in this range, make an unknown angle <5 with the normal N to the S-front, Fig. A2,
and O"N and O"T become alternatively

O"N = 0"1 cos2
J+0"2 sin2 J

O"T = 0"1 sin2
J+0"2 cos2 J

FIG.A2

(140)

(141)

Equating equations (128HI40), and (129HI41), gives two equations for the four
unknowns /:10", 0"1' 0"2 and J, while the yield relation, F = 0, furnishes a third equation. The
three equations are homogeneous in /:10" and 0"1' 0"2 so that J, y, () the stress ratios 0"J/:10",

and their equivalent Pcan be computed. One finds

(142)

where the positive root is to be used. (The negative root corresponds only to a trivial
interchange between 0"1 and 0"2')
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The principal stress deviator s1 and the invariant J 1 are

(143)

(144)

(
(+») _ (1-2v)(p+ 1) A

SI 'Ps - 6(1- v) tl(J

(1 + v)
J l = (1- v/(J

where ,1(J is the as yet arbitrary stress discontinuity at 'Pp, while c5 is obtained from the
equation

3
cos 2c5 = 7J cos 2( 'Pp - 'Ps)' (145)

Excluding the trivial addition of multiples of re, there are two roots ± Ic5l such that
there are two possible values, each, for y and e:

(146)

(147)

APPENDIX C

ANALYSIS FOR RANGE IIa

Solutions in this range have an inelastic pressure front, but are otherwise entirely
elastic.

The stresses in the region iji +) S 'P < 'Ps, Fig. A3, may be obtained from Section 2.2.

FIG. A3

Let ,1(J be the as yet unknown discontinuity at ijJ, then one finds

where

(148)

R = l-Cl~3 .
1+2Cl~3

(149)
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In the region 'fJ ~ 'fJ~+) the principal stress (Ii = - 1 is vertical; the stress (13 = (Iz

must equal a3 while (12 remains to be determined, or

(12 = R(ll = -R (13 = R~(I (150)

where R is unknown. (The possibility of (12 = -1 being vertical would be a trivial inter­
change of subscripts.)

At the shear front, the normal and tangential stresses (IN and (IT must be continuous,
which gives two equations to determine the unknown quantities ~(I and R,

cos 2'fJs
~(I =

(1- R) cos2 ('fJ- 'fJs)+(1 +R) cos2 'fJs- l

R = -1-(1 +R)~(I.

(151)

(152)

(153)

To check the condition F ::;; 0 for n > 'fJ ~ 'fJ~+) the invariants can now be determined
using equations (150), (152).

J 1 = (1 +2R)~(I }

J2 = 1+(I+R)~(I+(I+~+jP)(~(I)2 .

After manipulations the condition F ::;; 0 may be brought into the form

sin (4'fJs-2~ sin 2~ ::;; 0

or, due to sin 2~ < 0,

APPENDIX D

ANALYSIS FOR RANGE III

(154)

(155)

It was concluded in Section 3 that solutions without initial discontinuities exist in
Range III. Such solutions start at 'fJ = ~ with initial values p = 3, y = n12, for which the
differential equations become singular so that their solution requires special treatment.
To obtain asymptotic solutions near the singularity, the variables 'fJ, p and yare replaced
by E, A and Y/, respectively, defined in equations (122). The new variables are deemed to be
small quantities, so that approximate equations can be obtained by ·retaining in each
expression only the leading terms in the above quantities. However, the relative magni­
tudes of the three quantities are not known beforehand, requiring the retention of the
leading terms in each of the variables. The determinantal equation (30) becomes

(156)
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where

(159)

(158)

(157)
12{ 3 - (1- 31')[1- 2v -4aj3(1 + v)]}

bs = J }
(1-2X){ 1-2X(1-2v)+a-i(1 + v)[4+aj3(2-3X)]

16(1+V)[I-2V+6aZ(I+V)]J[(~r-IJ
b, ~ (1- 2,){1-2X(I- 2,)+_~3(1+ ,)[4+_'-"3(2 - 3X)] }

X _ (1 + v)(1 +2aJW
- 3[1-2v+6aZ(I+v)]·

While b9 is positive everywhere, bs is positive in Range III, considered here. Using
equations (34H36) expressions for {3' and y' can be formed and, after changing to the new
variables, lead to

d'1 GL
de = A 1'1 V + 1

dd z GL
de = [B 1d+Bz'1 JV

(160)

(161)

where

(62)

(164)

(163)

(165)

_ 1 {-3+0-2X)[I-2v-4aj 3(1+V)]}
AI - 30-2X) 1+0- 2v)0-2X)

4[1-2v-aJ 3(I+V)J
B1 ="3 1+(1-2v)(I-2X)

B = -4{3+(1-21')[1-2V-2aj 3(I+V)]}
z 0- 2X) 1+0 - 2v)(l- 2X)

where X is given by equation (159).
The knowledge of the nondimensional stress variable d, equivalent to 13, is not sufficient

to find the stresses, and one additional relation is required. The most suitable one is
obtained by adding equations (34) and (35), leading to an equation for (s 1+ sz),

d GL
-[In(sl +sz)] = Cl~
de V

where

. C _ -4aJ3(I+v)[I-2v+aJ3(1-5v)-6aZ(I+v)]
1 - 3[1-2v+6aZ(I+v)][I+(1-2v)(I-2X)]

(166)

When solving the three equations (156), (160), (161) in the three unknowns '1, d and
GLjV, the first two are small quantities, while GLjV must go to infinity in the limit e ~ o.
(The possibility of finite values for this limit has been previously eliminated in Section 3
as permitting only trivial solutions Sj = J 1 == 0.)
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(169)

(170)

bg and b9 being positive, equation (156) is hyperbolic in character, and permits two
types of asymptotic solutions. In solutions of Type A, 'I and ~ are proportional to .Je,

'I Dj.Je ~ = D2Je (167)

while for solutions of Type B, YJ is proportional to .Je, while ~ is small of higher order,

'I = Dj.Js ~ = D 2eN (168)

where N > 1.
For solutions ofType A, equations (167), the leading terms on the right side ofequations

(160), (161) only are retained, giving

d'l GL
de = Aj'lV

d~ = B ~GL.
ds j V

Elimination of GL/V and substitution of equation (167) leads to a requirement on the
coefficients, AI = B I' This requirement is not satisfied, so that solutions of Type A are
impossible.

To obtain solutions of Type B, only the term bg f/2 on the left side of equation (156) is
retained, so that

Equation (169) applies again, giving

GL I
-=--
V 2A 1s'

(171)

(172)

(173)

This relation gives the proper sign for L and satisfies the requirement for singularity of
GL/V. To determine the quantity ~ it is noted that equation (170) would apply if N lies
in the range -! < N < 1 for the exponent, so that in this case again no solutions can exist.
Alternatively, assuming N > 1, substitution of 'I and GL/V gives a solution for ~ propor­
tional to e, equivalent to N = 1, which is a contradiction. This leaves solely the possibility
N 1, for which case equation (161) indeed gives without further simplification the
solution

D
_ B2Di

2 - 2A 1 -B1

Being proportional to s, the quantity ~ is small compared to 11, so that-as a first
apprOXimation-the relations

(174)

(175)

may be used. Substitution of equation (172) into equation (165) gives after integration

(176)
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(177)

where Co is an open constant of integration, while the exponent is

CI

n = 2A
I

'

Equation (175), stating ~ ~ 0, implies fJ ~ 3, such that the ratios of the stresses must
be the same as at the inelastic shock front

S2 -!SI (178)

_ ..)3
(179)J I --SI

2ex

(11 = [1+aJ12}1 (180)

indicating that all stresses are proportional to sn. It is important that this exponent, while
always positive, is less than unity and usually a very small number, of the order of 1/100
(for the specific case v = 0, ex = 0·05 one finds n = 0'00598). The derivative of the stresses
with respect to the angle qJ is infinite for s -+ 0, and the small value of n indicates a very
rapid stress rise adjacent to the singularity.

(Received 20 March 1967)

AficTpllKT-l1ccJIe,ll.yeTclI Mil ynpyro-nJIaCTH'IHoro MaTepHaJIa ,lI.ByxMepHall CTaU;HOHapHall Ja,ll.a'la

3clMlJeKTa HMnyJIbCHOrO ,lI.aBJIeHHII, ,lI.BHlICeIl\erOCIl C csepXceACMH'IecKOA CKOpOCTblO no nosepxHocTH

nOJIynpocTpaHCTBa. DPHHlIToe yCJIOBHe nJIaCTH'IHOCTH IIBJIlIeTCII c1lYHKu;HeA nepBoro H BToporo HHBapHa­

HTOB TeH30pa HanpllllCeHHA. OHO IIBJIlIeTCII TaKlICe nO,ll.XO)l.lIIl\HM Mil 3ePHHCTOA Cpe,ll.bI, B KOTOpoA 3eynpyroe

)l.ecPoPMau:HH npOHCxO)l.lIT OT H BHyTpeHHoro CKOJIbllCeHHII npH yCJIOBHH KYJIOM60BCKOro TpeHHII.

3a,ll.a'la HeOTBeMJIeHHO HeJIHHeAHalI H npHBO,ll.HT K CHCTeMe conpllllCeHHbIX ,lI.HclMlJepeHlI;HaJIbHbIX ypaBHeHHA,

KOTopbIe pewalOTCII C nOMOIl\blO BbI'IHCJIHTeJIbHOA MaWHHbI. XapaKTep peweHHA COBepWeHHO JaBHCHM

OT BallCHbIX 6e3pa3MepHbIX napaMeTpOB, HanpHMep OT '1HCJIa Maxa, Ko3c\lcPHlI;HeHTa DyaccoHa H BeJIH'IHHbI

<x, 0603Ha'iaIOIl\eA yrOJI BHyrpeHHero TpeHHII. ,L(aeTclI Ta6JIHu;a C peweHHIIMH )I.JIlI palHbIX KOM6HHaU;HeA

napaMeTpOB.


