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NOTATIONY
by, functions defined by equations (31), (38), (157) and (158)
Cps Oy € velocity of propagation of elastic P-waves, S-waves, and inelastic shock fronts, respectively
Young’s modulus

F plastic potential, equation (4)
G shear modulus
Ji s invariants, equations {2) and (3}
K= 32;(1133)(? bulk modulus
L <0 function related to inelastic behavior, equation (28)
pix— Vi) surface pressure
2o intensity of step pressure
R ratio of principal stresses
84,5, principal stress deviators
Sx Sy Sy» 57, 5 Stress deviators with respect to axes x, y, etc.
t time
i, b particle velocities in x and y directions, respectively
Uy, Uy normal and tangential component of particle velocities, respectively
U characteristic velocity
14 velocity of surface pressure
X,y Cartesian coordinates, Fig. 1

pv: . . . .

=Sgsinte nondimensional expression

X X values of X at P- and S-fronts, respectively
a material parameter related to the angle of internal friction, equation (126)
B = b nondimensional stress variable

s+,
¥ angle between o, and position ray of element, Fig. 4
d angle between ¢, and normal to S-front
As=f-3 small quantity for purposes of asymptotic expansion
Awa, Ai, etc. increments of o, 4, etc., at a front
c= Q9—¢ small quantity for purposes of asymptotic expansion
£ bi; strain, strain rates
if &F elastic and inelastic strain rates, respectively
n = y-g small quantity for purposes of asymptotic expansion

* The paper contains results of research sponsored by the Air Force Weapons Laboratory, Kirtland Base,
N.M., with P. Weidlinger, Cons. Engineers.
t Other symbols, which are used in one location only, are defined as they occur.
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angle defining the direction of the major principal stress, Fig. 4

/>0 function related to inelastic behavior, equation (10)
2
u= J nondimensional stress variable
S, +5;
v Poisson’s ratio
n = 314159...
P mass density of medium
aij 0; stresses, stress rates
0y, 0,, 0, principal stresses
T shear stress
@ position angle of element, Fig. 4
Op, Oss O position of elastic P- and §- and inelastic shock fronts, respectively
@1, ¢, €tc. limits of inelastic regions
(1] angle of internal friction

differentiation with respect to ¢

Abstract—The two-dimensional steady-state problem of the effect of a step pressure traveling with superseismic
velocity on the surface of a half-space is treated for an elastic—plastic material. The plasticity condition selected
is a function of the first and second invariants of the stress tensor, and is suitable for a granular medium where
inelastic deformations are due to internal slip subject to Coulomb friction.

The problem is inherently nonlinear and leads to a system of coupled nonlinear differential equations which
are solved by digital computer. The character of the selutions is radically dependent on the significant non-
dimensional parameters, i.e. the Mach number, Poisson’s ratio and a value « defining the angle of internal friction.
A table giving the solutions for various combinations of the parameters is given.

1. INTRODUCTION

THE two dimensional problem of the effect of a pressure pulse p(x — V't) progressing with
the velocity V" on the surface of an elastic half-space, Fig. 1, has been treated by Cole
and Huth [ 1] for a line load and, by superposition, may be found for any other distribution
p(x— Vt). Miles [2] has considered the three dimensional problem of loads with axially
symmetric distribution p(r, t) over an expanding circular area on the surface, Fig. 2. He
has demonstrated that the plane problem [1] contains the asymptotic solution for the
three dimensional problem [2] in the region near the wave front. The actual solution of
the three dimensional problem would require a great numerical effort, which can be
avoided by using the solution of the plane problem to estimate the effect of circularly
expanding surface loads.

Real materials can not be expected to be elastic, and solutions of the three-dimensional
problem, Fig. 2, for dissipative materials are extremely complex. However, estimates for
the three-dimensional case can be made from generalizations of the problem treated in
[1] for dissipative materials. This has been done for linearly viscoelastic materials [3]
and [4], in the superseismic and subseismic ranges, respectively. The superseismic case
for an elastic—plastic material subject to the von Mises yield condition has recently been
treated [5] by two of the authors. For possible application to granular media the present
paper considers an alternative material where internal slip subject to Coulomb friction
may occur.

The slip mechanism in the medium makes the problem nonlinear, so that super-
position is not permitted and each pressure distribution p(x — Vt) poses a separate problem.
The present paper treats only the case of a progressing step load p(x— Vi) = p H(Vt - x).
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Based on concepts of the theory of elastic—plastic materials, it is shown in [6] that an
isotropic material subject to internal Coulomb friction can be represented by a model,
the behavior of which is governed by a plastic potential

F = |JJ,|+ad -k 0y}

where J, and J, are the invariants
Jy=o0y ¥)
Jy =358 (3)

while « > 0 and k = 0 are material constants. a is related to the angle of internal friction
and is therefore subject to the limit « < /{5, [6], and k is a measure of the cohesion.
Because the surface pressures for which this study is intended are large compared to the
magnitude of cohesion, only the limiting case k — 0, is considered. Equation (1) then gives

F = |JJy|+al,. 4)

The effect of the restriction to the limiting case k — 0 is discussed in the Conclusions.
The behavior of the material is described by the following statements:
1. To represent a granular material with no cohesion, the mean stress J,/3 must be
compressive, or

Ji <0 5)
2. If, in an element of the material at a given instant,

F<O0 (6)
the changes in stress and strain, ¢, &; will be related by the conventional elastic
relations.

3. However, if the yield condition at a time ¢ is satisfied

F=90 N

three possibilities exist. There may be further loading of the element with permanent
plastic deformation and dissipation of energy, in which case F = 0. Alternatively,
there may be unloading without permanent deformation, in which case F < 0.
Finally, there may be a neutral state, where F = 0, but no permanent deformation
or energy dissipation occurs. If plastic deformations occur, the total strain rate will
be the sum of an elastic and a plastic portion
& = EE+E ®)
where &; is obtained from the conventional elastic relations, while
oF
= 1— . 9
5= 1g ©)
The quantity 4, which must be positive,

>0 (10
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is an a priori unknown function of space and time. In case of unloading, and in the
neutral case the elastic stress—strain relations

by = & (11)

apply. The neutral case occurs in the solutions obtained later in regions where
&;=0,;=0.

The fact that the same set of differential equations does not hold everywhere, but that
there are regions with moving, a priori unknown boundaries, complicates the solution of
dynamic problems in this type of material considerably. In the following, the basic equations
will be formulated separately in regions with and without additional permanent deforma-
tions at the particular time ¢, and the solutions will be matched to obtain a complete
solution satisfying the prescribed surface conditions. The problem being much too complex
to expect closed solutions, a numerical approach suitable for digital computers will be
employed. The technique is related to the theory of characteristics and is a generalization
of the method used in [7].

P(X - V1) — 8 VELOCITY V

FiG. |

The problem to be solved considers only the steady-state, i.e. the fact is ignored that
in reality the loads p(x— Vt) in Fig. | must have begun at some large but finite negative
value of time. This omission of the initial condition results in a lack of uniqueness, which
can be removed by consideration of the character of solutions of the problem in Fig. 2.

& VELOCITY V

FiG. 2
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The lack of uniqueness and a remedy are best seen in the elementary example of a half-
space of an inviscid compressible fluid loaded by a uniform pressure pulse, p, which
progresses with supersonic velocity, V > ¢. There is an obvious solution, Fig. 3a, in which
the load produces a plane wave of intensity p progressing with a front inclined at the
appropriate angle i = sin ™! ¢/V. However, this is not the only steady-state solution. An
alternative is a plane wave, the front of which is inclined at the angle 180° — . Combina-
tions of the two solutions are also correct steady-state solutions. To find states generated
by the application of pressure on the surface only, it can be reasoned that solutions which
include the wave front shown in Fig. 3b can not apply because the medium ahead of the
front shown in Fig. 3a should be undisturbed when the applied load moves with supersonic
velocity. Thus, in case of the fluid a unique solution is obtained. Similar reasoning will be
used in the present problem.

T
¥
Iy

t——- \]

T LTIl

~

FRONT

FiG. 3b

2. FORMULATION OF THE BASIC EQUATIONS

Figure 4 indicates the half-space and a system of Cartesian coordinates. x is in the
direction of motion of the step load, y and z are normal to the surface in and out of the
plane of the paper, respectively. The analysis considers the case of plane strain, ¢, = 0,
when the velocity of V of the step load is superseismic, ie. larger than the velocity of
elastic P-waves in the material. Throughout the analysis it is assumed that the strains
and velocities are small.

As stated in the introduction there are, in general, inelastic regions in space—time where
additional permanent deformations occur, and other regions where changes of stress and
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/—p=poH(Vt"‘) —
W
\ $
\
14
0

FI1G. 4

strain are entirely elastic. The basic differential equations for the two types of region must
be treated separately, It will also be necessary to consider the possibility of shock fronts,
where the differential equations break down.

2.1 Inelastic regions

Combining the familiar stress—strain relation

. l1+v v .
where J;; is the Kroneker delta, and the relation
. [ .
&y = 5[“:‘,;"*‘“;’,:‘] (13)
gives, for plane strain, four constitutive equations
ou 1_, . . oF
= E[U"x —v(6,,+6..)] +,{60‘xx (14)
v 1 oF
— = —[g,,—V(d 722) |+ Am— 15
3y = ELow Yt G+ 2 (15)
1. . , OF
0= _E*[GZZ—V(ny+Uxx)]+/~‘éa—“ (16)
i ) 1. _OF
LR E I (17)

o tax Gt

where  and 0 are, respectively, the x and y components of the particle velocity. Further,
in a linear theory the two equations of motion are

oo ot

ox + ﬁ_y
60}'_\7

+6y

m’m
=1

ou

= g (18)
&

=P (19)
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The yield condition, equation (4), and equations (14)(19) form a set of seven equations
governing inelastic regions. Inherently, however, the unknown function A must satisfy
the inequality A > 0, equation (10), required for an element in an inelastic region.

It was found convenient to express the four unknown stresses by four other variables,
viz. the invariant J, the two principal stress deviators s, and s,, and the angle 6 formed
by the direction of s, with the surface, Fig. 4. The appropriate relations are

Oyx = S, 8in2 @+s, cos? 0+3J, (20)
o,, = s, sin? §+s, cos® 6+3J, (21)
Oz = _sl_32+% 1 (22)

v = 2-"2sin20. (23)

In the numerical analysis the subscripts 1 and 2 will be selected such that s, is the major
compressive deviator.

Because the steady state case is considered, all quantities appearing in the analysis
which are functions of x and t must be of the form f(x— Vt). For the step load
p = poH(Vt— x), dimensional considerations similar to those used in [5] make it plausible
that the various quantities do not depend on x— Vt and y separately, but must be solely
functions of the ratio (x — Vt)/y. This permits introduction of the angle ¢, shown in Fig. 4,
as new independent variable,

_—
¢ = cot™ = S 24)

This transformation changes the six partial differential equations obtained above into a
set of six simultaneous ordinary differential equations. A seventh differential equation is
obtained by taking a derivative of the yield condition. By elimination of the velocities
u and o, one finally obtains a system of five ordinary differential equations,*

1-2 r 7
-1 -1 1 e 0 S, +5,+ W s}
+Y +24%J,
) 1-2v . ,
sin? y cos? y 1 _3X(m) —sin2y —6Xa?J, || s,
1sin2y  lsin2y  sin2p 2X-1 0 1y —0 (25
sinfy—X X-—cos’y —cos2y 0 X(s1+5y) || (51—5)0
GL
| 25:+5; 51 +25, —6a%J, 0 0 J B J

* Details of the manipulations may be found in [8).
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where
=90 (26)
_pV
X = G sin” ¢ (27)
Ay
L=+—-" _ <0 2
+fo1 sin’ ¢ = %)

The meaning of the angle y is shown in Fig. 4. The inequality in equation (28) follows
from A > 0, equation (10), and J, < 0, equation (5).

The unknowns in the differential equations (25) are four quantities defining the stress
field, s,, s,, J, and 6, and a fifth quantity L which is a measure of the rate of plastic
deformation. The set of equations is linear and homogeneous in the four derivatives and
in the quantity L, and may be satisfied by

sSi=85,=J,=(5,—5)0 =L=0. (29)

However, L = 0 implies /2 = 0, which violates equation (10). It follows that in an
inelastic region the determinant of equations (25) must vanish, giving the “‘determinantal
equation”’

bi+bby, =0 (30)
where
b, =2[1+(1-2X)1-2v}]
b, = fcos2y+(1-2X)[1—-2v—4u(1+v)] (31)
by = (1+v1=2X)1+2u)*—p*X
and
S1 =95,
= = 32
b= (32)
a?J,
= . 33
h= s, (33)

Due to the vanishing of its determinant only four of the five equations (25) are
independent. As L may not vanish, s}, s3, J; and 6" can always be expressed in terms of L,

GL
Sy = 38y +52)bs +ba) (34)
GL
5y = %(51‘4“52)(175—174) % (35)
GL
0= b (36)

GL
J1 = 3(s, +52)b77 (37)
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where

2 [b,
b, = l_zx[b—ICOSZy—ﬁX]

2 1-2v b, )
b5_§(1+v)[1+v E+1+a\/(3+ﬂ)] >
_ sin2y b, (38)
7 p1-2X) b,
b, b
b, = 2_75
b, 27 ]

Since equation (30) must remain valid throughout an inelastic region, it may be
differentiated with respect to ¢. Substitution of equations (34)37) into this expression
furnishes a linear equation for the value of L,

2Xb,(1—2v)sin 20 +31Xb, sin 2¢ [2(1+v)(1 +2u)> + B3+
+2b,[B sin 2y sin? ¢ + X sin 2¢ (1— 2v)—4X sin 2¢ (1 + v)u]
B[+ %) (1 + 220 (1 —2X)(bs + 622b7)— Xbo B + '
sin? ¢

GL
= (39)
+b,[b, cos 2y +28bg sin 2y + bs(1 —2X)(1 —2v)—

—12b502(1 4+ v)(1 —2X)]

The derivatives s}, 85, J7 and & can be obtained by substitution of equation (39) into
equations (34)+37).

If the values of s,, s,, J, and @ are known on one boundary of an inelastic region,
their values in the interior of such a region can be found from equations (34) to (39) by
forward integration. The starting values of 5, s5,, J, and # must satisfy the yield condition,

st+s;s,+53—a?Ji =0 (40)

and the determinantal equation, equation (30). Further, the forward integration is per-
mitted only when L < 0, as required by equation (28).

2.2 Inelastic shock fronts

The analysis in the previous subsection treated regions of finite extent, and the
additional possibility of infinitely thin regions, i.e. shock fronts, remains to be considered.
If such fronts exist in the present problem the equations obtained above should indicate
this by becoming singular, since at least one of the derivatives of the stresses must become
infinite at a shock front. Instead of searching for singularities it is better for a physical
understanding to demonstrate the existence and properties of shock fronts in general.
This general derivation automatically answers the question of stability of the fronts, by
proving that a front, where the stress rises with an arbitrarily steep slope, Fig. 5a, will
not disperse but propagate without change of slope.

Consider the basic equations (14)19), which apply to any type of wave propagation
in plane strain. To investigate the possibility of plane pressure waves without shear, the
y direction is selected as the direction of propagation. For such a wave, the shear 7, the
horizontal velocity # and all derivatives with respect to x vanish, while for reasons of
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o,f ——»DIRECTION OF PROPAGATION
f(Et-y)
STEEP SLOPE

y
FiG. 5a
jo.f
H(Ct-y)
J
FiG. 5b

symmetry o, = o,. Since x, y, z are the principal directions, the stress deviators s, and s,

become s, = s,, 5, = s,. Using the relation s, = —3s,, the yield condition (40) becomes
I1-a?Ji=0 (41)
while equations (14){19) furnish three relations
ob 1. - -
5.;:2—651+‘9“EJ1+1[51—2GZJ1] (42)
0= —ZaélwtﬁJ,—I[%slﬁ-Zale] (43)
ov  ds, 14dJ,
— = — 4z — 44
P T T3y 4
where
- A 2 [1+v
1 = ——, K = . 45
4T T, 3 (1 2 “43)

If a steep front, Fig. 5a, at which inelastic deformation occurs, is to propagate with a
velocity ¢ without change of slope, it is necessary that

sy = ayf(y—ct) = a, f(0) (46)
Jy=ayf(y—ct)=a,f(() (47)
v =azf(y—ct) = a3 f({) (48)

where { = y— ct, while the values g, and ¢ are free constants, and f is an arbitrary function.
Since J, is necessarily negative, and the signs of the coefficients g; are still undefined, one
can select the sign of f without loss of generality, say

f >0 (49)
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The increase of | f| with time requires then
<0 (50)

where the symbol ’ indicates derivatives with respect to (.
Substituting equations (46){(48) into equations (41)(44) and eliminating the velocity

v yields
=2 1 =2 -
f’[al(l—%)+§az 1—%)]+pcif[al—2a2az] =0 (51)
[1pe® 1 pe - ,
f 5"26(11—5 —3'1?02 —pCj.f ial + 2« a,| = 0 (52)
f? Ba% —azaﬁ] =0. (53)

If shock fronts of the type sought exist, these three equations must be satisfied for
arbitrary functions f, subject to the limitations of equations (49), (50) and subject to the
condition A > 0. Equation (53) gives

4 _ 3 (54)
a, 20

Equations (51) and (52) permit nonvanishing values f, X and f’ only if the determinant of
the coefficients of f* and pcAdf vanishes, yielding after substitution of equation (54)

K ( +20,/3)
P L+vi|
[l +6o¢2(———1 —2v)]

However, the result is valid if, and only if, 2> 0. Computing 4 from equation (51)
yields, after simple manipulations, the inequality

& =

(55)

1 1-2v
17— 2 <0
NS (56)

where the upper or lower signs in equations (54)-(56) are to be used consistently. The
limitations « > Q0 and 0 < v < }indicate that the lower sign never leads to a valid solution.
Using the upper sign one obtains the requirement

1 1-2v
RNV 67)
and the corresponding velocity
, K (1+2a/3)?
=X (1+22y3) (58)

o]
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The stresses s, and J, at the front have the ratio

s, 4 2«

il )
The function f being arbitrary, it may be selected as a step function,
fly—ct)= H(ct—y) (60)
as shown in Fig. 5b. The discontinuities As, and AJ, in the stress history
5, = As,H(ct—y) 61)
J, = AJ,H(ct—y) (62)
then satisfy equation (59) provided
- % . (©3)
The corresponding velocity to be obtained from equation (48) is
b = AvH(ct—y) (64)
where
AA_JUI R e +32;5\/ 3 (65)

Equations (61)-(65) give the relations for an inelastic shock front entering a stressless
region, a case which will be utilized in the construction of solutions in Section 3.

The above investigation of possible shock fronts was based on the premise that 7 = 0.
The fact that inelastic shock fronts are impossible when 7 # 0 is demonstrated in [8,
Appendix A], so that the discontinuity described in this section is the only inelastic one
to be considered.

Summarizing, it has been demonstrated that, for values of a and v which satisfy
equation (57), a plane pressure discontinuity will propagate with the velocity ¢ given by
equation (58). In order to occur in the solution of the steady state problem, Fig. 4, the
front must be inclined at such an angle ¢ that the horizontal component of the velocity
¢ equals the velocity V of the load on the surface. The angle is obtained from equation

(58),
f = m—sin~t %/\/(5\ (14213 (66)

et

The principal stress at the front being normal to the front, requires

n n
=T 0=yt (67)
Further, the relation s, = —1s, at the front defines the value f, equation (32)

B =30 (68)
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2.3 Regions and shock fronts without inelastic deformation

In a region where at the instant considered no inelastic deformation occurs, the strain
rates are defined by the purely ¢lastic relations, equation {11), and the stresses are subject
to the inequalities

F=|[st+s;s,+s3)}+aJ, <0
(69)

J, <0.

In addition, the equations of motion, equations (18), (19) hold. To obtain the differential
equations, one could proceed in the same manner as in Section 2.1. However, it is not
necessary to do so, because the resulting differential equations must obviously follow
from equation {25} by making the following two changes:
{1) The last equation is to be omitted because it represents the vield condition F = §,
which does not apply.
{2} To account for the change in the stress strain law from equation (8) to equation
(11), L = 0 is to be introduced into equations (25).
In this fashion the following four simultaneous differential equations are obtained.

u 1-2v 11 7

-1 — 8
! L4+v 0 o1
. - .
sin? y cos? y 1-3X (—j) —sin 2y EA
I+v =0. (70)
sin 2y sin 2y 2sin 2y —21-2X){ |
| sin?y—X X-—cos’y ~—cosly 0 4 L{sy—s,)8

The equations are linear and homogeneous so that the derivatives of the stresses,
sy, 85, J1 vanish, unless the determinant of equations (70) equals zero. In spite of the fact
that the coefficients in equations (70) contain y, the value of the determinant is independent
of this value. The determinant of equations (70) vanishes when X is a root of

4X(1-2X)[1+(1—2X)1—-2v)] = 0. )

Equation {71) has two significant roots,

(72)

and
XS = %, (73)

and one, X = 0, which may be shown to be trivial. Substituting the two roots X, and
X into equation (27) furnishes two locations

@p = m—sin~ ‘{%\/Eg(;:;VU}E n-sin”‘[%] 74
o = x—sin“’[—;}\/{gﬂz z;'— sin~ {%} {75)
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at which the determinant of equations (70) vanishes, where cp, ¢ are the velocities of P-
and S-waves, respectively. In any location ¢ # ¢, or ¢ the derivatives s}, s,, J vanish,
so that the stresses must remain constant everywhere, except at the locations ¢, and ¢

The angles ¢, and ¢4 are the locations of potential elastic P- and S-fronts, which may,
therefore, be part of the complete solutions to be obtained in Section 3. The following
pertinent details for these fronts will be required subsequently.
2.3.1 The P-front. Designating the changes in the various quantities at the front by the
symbol A, the discontinuities in the stresses oy, oy = o, (normal and tangential to the
front, respectively) and in the component i1y of the velocity (normal to the front) are
proportional,

v -1

Aoy Aoy i Auy = 1: D (76)
1—v pcp

No other discontinuities can occur.

The changes Aoy and Ao are of course restricted by the fact that the inequalities (69)
for the stresses must be satisfied on either side of the front. No general study of this
restriction is required, but in Section 3 it will be necessary to know if a P-front is possible
when the stresses and velocities ahead of the front ¢, vanish. In this case the conditions
(69) are satisfied ahead of the front, F = J, = 0. To check behind the shock, it is noted
that the stresses Aoy and Ao are not only the total stresses, but they are also the principal
stresses, Agy = g,, Ag; = g,. After computation of s; and J,, one finds two necessary
conditions for a P-front

o, <0 17

- 1 1-2v
=3 T+v

o (78)
A compressive shock front of arbitrary strength o, < 0 in the location ¢ = ¢, is there-
fore possible if, and only if, the inequality (78) on « is satisfied. The angle y and the quantity
B, equation (32), immediately following the front are

y:% f=3. (79)
Attention is drawn to the fact that the inequalities (78) and (57) which permit, respec-

tively, an elastic or an inelastic pressure discontinuity to enter a stress free region, are

mutually exclusive, but complementary. In other words, for any combination of « and v,

one, but only one, of the two types of fronts can exist.

2.3.2 The S-front. At an S-front discontinuities occur only in the shear stress 1y = 17 =7

and in the tangential velocity iz;. The changes are proportional,

AT:AiJT—*l:L. (80)
PCs

In addition, the inequalities (69) must again be satisfied ahead of and behind the front.
Checking the situation if the region ahead of the front is stress free, equations (69) are
again satisfied ahead of the front. Behind the front the stresses are

T = Ar, oy=or=sy=sr=J,=0. (81)
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The invariant J, may be written
J, = sk +sySp+s5+41? (82)
and, because in this last equation all stresses, except 7, vanish, the condition
F=J,-a?J?<0 (83)

is violated. Thus an S-front can not enter a stress-free region.

Some details about S-front locations where stresses ahead of the front do not vanish
will be required. Consider specifically the possibility of such a front at a point where the
equal sign in the first condition (69) applies ahead of the front,

F=J,—a%J? =0. (84)

This indicates that the material is at the verge of inelastic deformation.

Let the shear stresses just ahead of the front, for ¢, be 7, and those behind the front,
for ¢§*), be 7. The invariant J, and the deviators with respect to the N and T directions,
sy and sy, respectively, are equal at ¢§ ' and ¢{*’. Noting that the equality (84) is satisfied
ahead of the front, it is clear that the inequality equation (83) requires

i < [4l. (85)

The largest possible change At = 7—7 occurs therefore when 1 = —17, in which case
equation (84) is satisfied also for ¢§*. It is useful to consider this case in terms of the
principal stress variables used in Section 2.1, i.e. using the angle y and the quantities J,,
s; and B as variables. Figure 6 shows the direction of the major deviator s, ahead of the

rmm— \]

N ‘l II1 111111}

FiG. 6

front at an angle 7 to the S-front. The state of stress ahead of the front, 7, 5, and ,,
corresponds to the values of 7, sy and s; which apply in this location. Behind the front
the state of stress is defined by 7 = —1, sy, sy, which stresses define changed values y, s,
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s,. When computing these values by the conventional relations it is found that s, s,,
being even functions of 7, are necessarily equal to §,, §,, respectively. y, being an odd
function of 1, changes

y=7n=7. (86)

Therefore, a change in shear from T to T = —1 at ¢g does not change the values of the
variables s,, s,, J, or f, but only the values of the angles y and 8. The latter becomes

atg™: 0= 95—y = ps+i—n. (87)

These changes in y or 8 occur if the stresses satisfy the equality (84) ahead of, and behind
the front.

3. CONSTRUCTION OF SOLUTIONS

In Section 2 a number of partial solutions were obtained from which the solution of
the complete boundary value problem is now to be constructed. Section 2.1 gives the
differential equations for the determination of the stresses and velocities in inelastic regions ;
from Section 2.3 it is known that all unknowns in elastic regions are constants, except for
discontinuities of a prescribed nature at the locations ¢4 and ¢,. In addition, there may
be a shock front with inelastic deformation at a location ¢.

As mentioned in the last two paragraphs of the introduction, steady-state problems of
the type studied here need not have unique solutions. However, it may be possible to
eliminate excess solutions by specifying that the steady-state solution desired should be
the asymptotic solution, if any, of the problem of an expanding load (Fig. 7) applied on a
half-space initially at rest. This additional condition is invoked here and furnishes a vital
boundary condition for the solution through the reasoning which follows. It is known
that the partial differential equations of the transient problem, Fig. 7, are hyperbolic in

EXPANDING L0OAD

V e oo \f
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é,

FiG6. 7

elastic and in inelastic regions. The characteristic velocities U under elastic conditions are
U = ¢p and U = ¢, while those in the inelastic case are functions of the stresses, but
subject to the inequality U < cp. The hyperbolic character of the differential equations
and the inequality have been demonstrated in [9] for a general class of elastic-plastic
material governed by a plastic potential. This result applies here. The largest characteristic
velocity being less than c¢p, one can conclude that, in the non-steady-state superseismic
problem, V/c, > 1, Fig. 7, all unknowns vanish ahead of a front inclined at an angle ¢,
corresponding to ¢p, so that one has a boundary condition for the steady-state problem

forg<gp: o,=s,=u=bd=0 {(88)

H ks
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Additional boundary conditions apply at the loaded surface where the pressure
poH(Vt—x) is applied. At this surface one of the two principal stresses must be vertical
and equal to — p,, so that there are two alternative boundary conditions. Either

n

o, =5,+3/, = —po, 7=5 (89)

or
o, =5,+3, = —Dpo y=0,7. (90)

It is easily seen that the nature of all equations in Section 2 is such that p, will appear
as an external factor in the solutions for the stresses and velocities, while the non-
dimensional quantities 8, § and y are independent of p,. This simplification is due to the
homogeneous nature of the plastic potential, equation (4), and would not apply if equation
(1), allowing for cohesion, is specified. Therefore, only the case p, = 1 need be considered,
so that equations (89), (90) become

o1

or
0, =5,+3J, = —1, y=0,nx. 92)

At this point it must be stressed that no uniqueness or existence theorem for transient
problems is available for elastic—plastic materials. Although the boundary condition (88)
eliminates certain excess solutions of the steady-state problem, Fig. 8, which clearly are
not asymptotic solutions of the transient problem, Fig. 7, the remaining solutions of the
steady-state problem may still not be unique, because the original transient problem may
not have a unique solution. In constructing solutions it is therefore vital to consider all
conceivable possibilities.

PROGRESSING LOAD
—

EEEEEER’
4

FIG. 8

In the expectation that there should be a continuous transition in character and in
the numerical values of the solution, the latter will be considered as functions of the basic
physical parameters v, « and of V/c,. The concept that the character of the solution should
change smoothly as a function of the parameters is extremely helpful in the formulation
of the solutions. As a starting point one can explore the existence of a range in the above
parameters where the elastic solution applied and from there continue, step by step, into
further ranges.

Applying this gradual approach, one arrives at the conclusion that the occurrence of
discontinuous fronts at the transition from the stressless to the stressed state in the elastic
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situation will also apply in the more general case, at least for values of the parameters
close to those where the elastic solutions are valid. The first attempt will therefore be the
construction of solutions with an initial discontinuity at the arrival time, and the possibility
of continuous behavior at arrival will be considered subsequently to demonstrate unique-
ness, and also in situations where the assumption of an initial discontinuity does not lead
to a solution.

In accordance with the above approach, one expects that the properties of the initial
discontinuity will govern the character of the solution as a function of the parameters v,
a and V/cp. The existence and the nature of the initial discontinuities depend on v and x
only, so that these two parameters play a more important role than V/cp, and a preliminary
classification of the ranges can be based on v and a only. In the permissible range for these
parameters, 0 < v < 4 and 0 < « < 1/,/12, there is according to Section 2.3 a Range 1,
Fig. 9a, defined by

/ 1—2v
30 >
Vi3nz I+v

(93)

where an elastic P-front, but no other discontinuity can enter a stress free region, while
for

\/3a< 1-2v 94)
1+v (

only a compressive discontinuity with inelastic deformation may enter a stress-free region.

Max v=1/2
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FiG. 9a. Principal ranges.
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The total range where the latter inequality applies is subdivided in Ranges II and I1I,
depending on whether the velocity ¢ of the inelastic front is larger or smaller than the
velocity cg of elastic shear waves, respectively. Range II1, where ¢ < cg, applies if

3

VI2(1+v)] 9

V< -2+

while Range 11, ¢ > cg, applies if equation (95) is violated. The reason for this division
will be seen later.

3.1 Range la

As indicated above, the first step in the construction of solution is the determination
of the range, designated Range Ia, in which entirely elastic solutions exist. In such a
solution a P-wave enters a stressless region and an entirely elastic solution is possible, if
at all, only in a range entirely within Range I, Fig. 9a. The stresses in an elastic half-space
due to a superseismically traveling uniform surface pressure are given in Appendix A.
There is a uniform state of stress between the P-front and S-front, and again a uniform,
but different state of stress between the S-front and the surface, Fig. 10. The two uniform
states of stress must satisfy the inequalities (69)

F<o0, J,<0. (96)

e AV

weee TITTILIT LTI
|/
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DIRECTION OF G e

S-FRONT

P-FRONT

Fi1G. 10. Configuration for range la.

There is no need to check the validity of these inequalities in the region between the P
and S fronts because this has actually been done in Section 2.3 where the existence of the
P-front in Range I was proved. However, equations (96) must be considered forz > ¢ > ¢,
At the S-front a state of pure shear is added to the state of stress for ¢ < @g. This can not
change the first invariant J, so that only the condition F < 0 requires checking.

Substitution of equations (138), (139) from Appendix A into this condition results in
the inequality

1{1 =212 [cos? 2 ps— ) 1]
25 0 s~ ¢p) 1
X _4(1+v’ [ cos? 2 ¢ 3 ®7
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Iy R
pre e {V\/ [,, 1—2»}} o
= a—sin-t| L /¢ 99
os = n=sin~' | 7. 99)

The inequality (97) defines Range Ia where the response is entirely elastic. The range is a
function of Poisson’s ratio and of the value V/cp, > 1, and its boundary can be found by
using the equal sign in equation (97). Figures 9b—d show that these boundaries end at the
one between the principal Regions I and II, the endpoint being defined by the relation

VIP o (1=2v)
H S d—i=3) (100)

where

Figures 9b-d show Range la covering nearly all the Range I, while in Fig. 9¢ Range la
actually covers all of Range I. It may be shown that for V/c,< 1061 Range la covers all
of Range I. The stresses in Range Ia are entirely elastic and are given by the simple relations
listed in Appendix A.

3.2 Range Ib

It was found above that entirely elastic solutions exist only when the inequality (97)
is satisfied. The remainder of Range I, i.e. the range

’ 2 _—
Doflorh< ] e teen, (1)

1—2v 2 cos? 2¢g 3

will be designated as Range Ib. In this range the solution can no longer be entirely elastic
and must therefore contain at least one location with inelastic deformation.

Using the expected continuity of the character of the solutions as a guide, the solution
in this range ought to start again with a discontinuity which, according to Section 2.3,
can only be an elastic P-front located at ¢p. Using equation (76) for the stress changes at
the front, one finds that for* ¢ = @}’ the inequality F < 0 is satisfied, provided the
special case (/3a = (1—2v)/(1+v) is excluded for separate consideration. Having recog-
nized that the solution must contain an inelastic region, where F = 0, a further elastic
stress change must occur, which is possible only at the S-front. The appropriate change in
the state of stress at the S-front has been obtained in Appendix B, in terms of the as yet
unknown stress discontinuity Ag at ¢, as follows:

For ¢p") < ¢ < ¢§7:

0= pp— (102)

n
2

* The symbol (+) in ¢%"’ indicates a value infinitesimally larger than g,.



Moving step load on the surface of a half-space of granular material 265

4]

_ I+v

while for ¢ = ¢{*):

Jy =100 (104)
5, = %ﬁm (105)
y =g¢|5| (106)
0= (ps—gi{&\. (107)

The quantity ¢ is obtained from
3
cos 20 = B cos 2(¢p— ¢g) (108)

and is subject to the inequality

s = |5| = Ps— @p. (109)

The special case \/3a = (1 —2v)/(1+ v) remains to be discussed. In this case the yield
condition F = 0 is satisfied already for ¢ = ¢4, so that the possibility of an inelastic
region no longer requires a shear front at ¢5. However, a change in shear leading again
to a state with F = 0 is still possible. For either possibility equations (103)(108) apply.
The special case simply means that one of the two values H¢p{+) is equal to O(pLH)) as
given by equation (102).

The results obtained so far, and further steps required, are best discussed in terms of
the angle # in various locations, illustrated in Fig. 11. The direction of the principal stress
between the P- and S-fronts according to equation (102) is normal to the P-front, while

(+) (+)

for ¢ > ¢, equation (107) defines 6. Because of the inequality (109), #(¢{*’) is less than

—e N/

wee TITTTLIIITTT]

0=7-(0,M—
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ALTERNATIVE DIRECTIONS
OF O,

S-FRONT
P-FRONT

Fi1G. 11. Configuration for range Ib.
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7/2 but more than 0, regardless of the sign of é. According to Section 2, there is no further
possibility for a change in § as required to arrive at the surface value 8(z) = n/2, (0 or =),
except one or more inelastic regions for ¢ > ¢,

Using the values of §, J,, 5,, ¥ and @ defined by equations (103107} the results of
Section 2.1 are now to be used to find and determine the history of the stresses and
particularly of the angle €. If a region can be found during the forward integration where
either of the values 8 = n/2 (or 0, or =) is obtained, the integration is terminated. From
the point of termination to the surface an elastic region of no change is selected such that
the surface condition for 8 is then satisfied. During this integration the unknown value
Ao in equations (104), {105) is a common factor in all stresses, so that the integration will
give a principal stress at the surface which contains this factor. It is finally selected to
satisfy the boundary condition, equation (91 or 92), 5, , = —1.

The use of the solutions derived in Section 2.1 for inelastic regions is quite straight-
forward. From the values of f, y at ¢{"’, potential starting points ¢, of inelastic regions
are located as roots of the determinantal equation {30). Next it must be verified that GL/V,
equation (39), is negative. If this 1s so, equations (34)«37) are used to determine the solution
by forward integration, continuously checking the sign of GL/V. The integration can be
continued until GL/V changes sign, but may be stopped at any desired location ¢,. When
an angle 6 = /2 (or 0, or =) for the direction of the principal stress is obtained, a solution
to the problem has been found.

The configuration was successful in all cases considered and led to just one solution
of the problem. The upper sign in equation (107) and the case @ = 7/2 furnished the
solution, but it is suspected that the other sign may apply when V/ep, > 1 is very close
to unity. The matter of possible alternative configurations which might lead to solutions
is discussed later in this section.

It is noted that Range Ib, which does not occur at all if V/c, < 1-061, applies even for
other values of V/c, only in a minute portion of the overall range of v and a, as can be
seen from Figs. 9(b-d).

3.3 Range lla

According to the definition of ranges at the beginning of this section, an initial inelastic
discontinuity, but no other, is possible in Range I1. Further, in this range, the location ¢
of this discontinuity, defined by equation (66), is such that

9 < ¢s. (110)

Range 11, which is the one of major interest, is defined by the combined inequalities (94,
95),

(111)

In that portion of Range Il which adjoins Range Ia, Figs. 9(b—¢), one expects that the
solutions after starting with an inelastic front of discontinuity at ¢ will remain entirely
elastic. The range in which such solutions apply and the values of the stresses are obtained
in Appendix C. This range is designated Range Ila, and the stresses are found in closed
form, the configuration being shown in Fig. 12.
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F1G. 12. Configuration for range Ila.

The discontinuity Ac in the normal stress at the front is

—Cos 2¢g
Ag = = — — 112
? (1—R)cos? (¢ — ¢5)+ (1 + R)cos? pg—1 (112)
where
— 1—a./3
Rolza3d (113)

14+20/3°

The principal stresses and their direction between the inelastic front and the shear
front are

o5 = 02 ¢t
o, = Ao
6, = 03 = RAc (114)
¥
Y= 5,

while between the S-front and the surface

9 Zg§:
g, =—1
6,=—R, o03;=RAc (115)
T
b=3
where
R= —1-(1+R)Ac (116)

and g, is the principal stress in the z direction.
The solution applies if the inequality

1-2
(1+2a,/3)* —36a” cos? g5 > 6( 1 +vv)cos2 @s (117
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is satisfied. The boundary separating Region Ila from the remainder of Region II,
designated Region IIb, is found by using the equal sign in the above relation. Figures
9(b—e) show typical curves for some values of V/c,. These figures indicate that Range Ila
covers only a quite small portion of Range II, except in the atypical case when V/c, is
only slightly larger than unity, Fig. e.

3.4 Range IIb

In Range 11, but outside Range Ila, the solutions are expected to start with an inelastic
pressure front at ¢, but additional inelastic regions must now occur. In the vicinity of the
boundary towards Region Ib, continuity requires similar configurations, as shown in
Fig. 13. Behind the inelastic front the stresses will be uniform with a shear front at ¢,
and a region of inelastic deformation in a location ¢ < ¢ < 7. The discontinuity in shear
At must be such that the yield condition F = 0 is satisfied for ¢ > ¢{*’.

e TTTTTLT LT

INELASTIC REGION—

S~ FRONT
T=4T7T OR T=0

F1G. 13. Configuration for range 11b.

However, at points remote from the boundary between Regions Ib and IIb alternative
configurations might occur and must be considered as possibilities in the numerical
analysis. In the configuration shown in Fig. 13 the possibility At = 0 could furnish a
solution, or inelastic regions may exist in locations ¢ < ¢ < ¢{ ', as shown in the
alternative Figs. 14 and 15, where shear discontinuities At # 0, may occur, or not, At = 0.

wanee TTTTTITTI

INELASTIC REGION

INELASTIC FRONT

F1G. 14. Alternative configuration,



Moving step load on the surface of a half-space of granular material 269

—

snce TTITTTIT T

*

INELASTIC FRONT

INELASTIC REGION ———#

FiG. 15. Alternative configuration.

Further, the configuration shown in Fig. 15 may have a subrange where the discontinuity
At is such that elastic conditions F < 0 are created and, therefore, constant stresses occur
for ¢ > ¢{*). Disregarding, for later discussion, solutions without initial discontinuity,
but allowing inelastic regions to split, this exhausts all possibilities to be studied. In all
cases considered the numerical analysis by computer furnished only solutions having the
configuration of Fig. 13. The search for roots of the determinantal equation, giving starting
points of inelastic regions never furnished a root for ¢ < ¢s.

The following statement summarizes the situation. The initial change from vanishing
to nonvanishing stresses occurs at an inelastic front with an as yet undetermined com-
pressive discontinuity Ag in the principal stress ¢,. This front is followed by a region of
constant stress, for ¢§’ > ¢ > ¢'*):

o, =Ac

f=3 (118)
T

0=—.
2

For locations ¢ > ¢4 there are two alternatives. If no discontinuity in shear occurs,
At = 0, equations (118) apply also for ¢ = ¢{*), while the angle 7 is
n

2

(+)

Nos') = os—o+5. (119)

However, if a shear discontinuity, Az # 0, occurs, equations (86), (87) give, using
7; = @s— ¢+7Z/2,

for p{*):

o, = Ao
B =

. (120)
7=5

T

=2¢ps—p—=.

0=2¢s—9p—3
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Equations (120) and the alternative values for Az = 0 are the starting points for numerical
integrations which are to be carried out in the manner described for Range Ib.

3.5 Search for inelastic solutions without initial discontinuity

In Ranges I and II solutions were constructed where the initial change, from vanishing
to nonvanishing stresses, occurred as a shock, either elastic at ¢p, or inelastic at @. While
the principle of the continuity of solutions makes the solutions obtained plausible, it is
necessary to investigate if solutions which start smoothly exist.

The differential equations in elastic regions permit definitely no smooth change in
stress for superseismic velocities V; so that only the inelastic case is considered.

If a smooth inelastic solution starting from vanishing stresses in a location ¢, exists,
an asymptotic study of the appropriate differential equations for ¢; = s; = J, — 0 in the
vicinity of ¢, must describe this solution. In order to be physically sensible, the angle y
in the vicinity of ¢, must be well behaved and may be considered a constant in the range
9o < ¢ < @+ ¢ where ¢ is small. The quantity GL/V < 0 must not vanish, otherwise the
region is not inelastic as postulated. There are, however, two possibilities for the behavior
of GL/V. In the limit ¢ — ¢, the function GL/V may be finite and well behaved, in which
case it may be considered a constant near ¢,; alternatively, GL/V may, in the limit, be
infinite.

The first possibility, where GL/V in the limit may be replaced by a constant is easily
proved to be impossible. Following the previous reasoning in Section II, solutions in an
inelastic region exist only if the determinant of equations (25) vanishes, in which case
four of the five unknowns will depend on the fifth. In the limit s, J, — 0 the last equation
(25) becomes trivial, 0 = 0. The last terms of the other equations vanish, because GL/V is
finite and products of GL/V and s; or J, in the limit are therefore zero. The remaining four
equations are then identical with the four equations (70) in the elastic case. They have
nonvanishing solutions only when ¢, = ¢5 or ¢, = ¢,. However, the yield condition,
F =0, represented by the last equation (25), which became trivial, may now not be
satisfied and must be checked. In the vicinity of s, J; — 0, the ratio of these stresses must
obviously be the same as at the P- or S-front, equations (76) and (80), respectively, obtained
from the same equations. Based on the discussion of the P- and S-fronts, one finds easily
that the requirement F = 0 is not satisfied, except in the special case when the values «
and v are exactly on the boundary between regions I and I, where ¢ = ¢,. However, in
this case one finds GL/V = 0, and no inelastic solutions whatsoever are therefore possible
when GL/V at ¢, is finite.

The case where |GL/V| - o« as ¢ — ¢, remains to be discussed. The first question
concerns the possibility of |GL/V| — co and conditions for the occurrence of such a
singularity. If such a point exists for some values of y and of the ratios of s; and J,, when
the latter are small, -0, then |GL/V| — oo would also occur for the same ratios if s; and
J, are finite. Equations (34), (35) and (37) which apply, would then give infinite values for
one or more of the derivatives s}, J. The possibility |GL/V| — oo exists therefore only in
locations where an inelastic front of discontinuity may occur and the conditions required
are those for such a front. Using the results of Section 2.2 for inelastic discontinuities, no
smooth solution can exist in Region I, because no inelastic shock front is possible. In
Regions II and III where such a front may occur at ¢, a solution of the type sought may
exist, starting at ¢, = ¢; the necessary initial values of the state of stress being again
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defined by
Bloo) =3 121)
o) = g .

If such an inelastic solution in a region ¢ > ¢ of finite extent actually exists, the
determinantal equation (30) must be satisfied for ¢ > ¢. This is necessary because the
previous reasoning only implies that this equation is satisfied for ¢ = ¢. To explore this
point an asymptotic expression for equation (30) is obtained by substituting

p=9p+e
B=3+A (122)
)’—2 n

where ¢, A and # are small quantities. Retaining the lowest order terms in the new variables
one obtains the determinantal equation in the asymptotic form

ban? —A? = bye (123)

where the quantities by and by are functions of v, a and V/cp, given in Appendix D. The
quantity by is always positive, while by may be positive or negative, changing the character
of the equation radically.

In Range 11, i.e. when the inequality (111) applies, by is negative so that the equation
has real roots only for negative ¢. While an inelastic region can exist for ¢ < ¢ ending at
@ with vanishing stresses, no such regions can exist for ¢ > ¢, i.e. in the location of interest
here. The solutions in Ranges I and II with an initial discontinuity previously considered
are the only ones possible.

In Range III, where the inequality (95) applies, one finds bg > 0, so that the deter-
minantal equation (123) has real roots for ¢ > 0 as necessary for solutions without initial
discontinuity in stress. The final condition, GL/V < 0, is also satisfied, because the stress
ratios in this region are initially equal to those for the inelastic front, where GL/V < Q.
All requirements are therefore satisfied and it is concluded that in Range III, and only in
this range, an inelastic solution without stress discontinuity exists. The details of its
determination are given in Appendix D.

3.6 Range Il

According to the definition of ranges, an inelastic shock front in the location ¢ is
possible, and one can attempt to construct a solution starting with this discontinuity in
analogy to Range II. However, the computational search for inelastic regions, for ¢ > ¢,
was unsuccessful, and the boundary conditions on the surface can not be satisfied without
such an inelastic region. While the determinantal equation (30) is nonlinear and too
complex to prove the nonexistence of roots in general, the approximate equation (123)
furnishes a partial proof, as there is obviously no root A =y =0fore > 0.

The impossibility of finding a solution with an initial discontinuity is, however, very
satisfactory because the previous subsection and Appendix D indicate that in this range
a solution exists which starts at ¢ = ¢ without discontinuity. Because of their singular
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character the differential equations at and near the starting point can not be solved by
the numerical procedure used in the other ranges. Therefore, the asymptotic solution
obtained in Appendix D must be applied for a small range ¢ > ¢, until the solutions are
sufficiently well behaved to return to the numerical integration of the differential equations
obtained in Section Ila.

To start the solution, equation (175) gives A ~ 0 so that in the proximity of ¢ = ¢
the value of § becomes approximately

B=3+A~3 (124)
while
T
y = = 12
y=stn (125)

where the small quantity || is inherently larger than the neglected value |A|. Equation
(176), and a similar expression for the principal stress ¢, contains an arbitrary constant
Co. If p, = ¢+e¢, is the end point of the asymptotic region, the value of the principal
stress o ,(p,) may be used as the arbitrary constant instead of C,. Choosing a value n = 7,,
small, yet large enough for the numerical integrations to work thereafter, one searches
for the corresponding value g, where the determinantal equation is satisfied by the
combination of f = 3, y, = n,+ /2 and ¢, The principa! stress ,(p,) at this point can
be made equal to unity. From this point on integration proceeds exactly as in the other
ranges. Due to the fact that equation (174) defining » has a + sign, it is necessary to include
the two possibilities + 7.

The procedure outlined was found to be successful, one, and only one, of the integra-
tions for +#, furnishing a solution. The stresses in the interval ¢ to ¢, increase as (¢ — @)".
To obtain their distribution the exponent n can be obtained from equation (177). n is a
very small positive number, of the order of 1/100. The configuration of solutions in Range
II1 is shown in Fig. 16.
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Fi1G. 16. Configuration for range II1.

The occurrence of solutions with and without initial discontinuity in stress, does not
break the continuity in the character of the solutions. Even for the continuous solutions
the derivative of the stresses at ¢ is infinite, as at a discontinuous front, and the numerical
results indicate that the change in stress in the asymptotic region due to the small exponent
n is so rapid, that this region is practically indistinguishable from a discontinuity, see
Fig. 17.
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FiG. 17. Typical result in range III (v = 0, x = 0-05, V/cp, = 2).

3.7 Numerical analysis

In Ranges Ib, IIb and IIl a numerical search for inelastic regions, and subsequent
numerical quadratures are required. In Section 2 the basic equations have been written
in a very abbreviated form, somewhat concealing the complexity of these relations. The
solution of these equations by hand computation is impractical, and the computations
were made on an IBM 7094. A common program was devised, allowing for the different
configurations which may occur.

The inelastic regions are always quite narrow as functions of ¢, only a few degrees,
and become even narrower as V/cp becomes large. It was therefore necessary to vary the
intervals of ¢ in the search and in the quadratures. For V/c, < 2 intervals of 1/500 rad
were used, while for V/c, = 5 intervals of 1/10,000 rad were selected.

The results obtained are discussed in Section 4.

4. NUMERICAL RESULTS AND CONCLUSION
4.1 Results

The effects of a step pressure progressing with superseismic velocity V > ¢, on a
half-space have been obtained for an elastic—plastic medium subject to the yield condition
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(4), representing an inelastic material governed by internal Coulomb friction. The solutions
depend on the elastic material parameters E and v, and on the additional parameter
a < /(1/12) in equation (4). a is related to the angle ® of internal friction, using equation
(10) of Ref. [ 6], N

J(1=3a%)"

In spite of the lack of a general uniqueness and existence theorem, one, and only one
solution was obtained for each combination of material parameters, surface load p, and
velocity V/cp > 1 which was considered. One finds, however, radically different con-
figurations, depending on the values of the nondimensional parameters v, a and V/cp.
The ranges in which the various configurations apply have been designated by I, II and
I11, where Ranges I and II have been subdivided into Subranges a and b. The values of the
parameters v and a alone determine which of the Ranges I, IT or III applies in a particular
case, as shown in Fig. 9a, while the subdivision into a or b depends on the value of V/cp,
typical cases being shown in Figs. 9b—e. These figures show that Ranges la and 1Ib cover
most of the total range in v and a, the other ranges being of very limited applicability.

Range Ia gives entirely elastic solutions, known from Ref. [1], and is not further con-
sidered.

The parameter « is inherently restricted, @ < 1/7/12, but sensible values for the angle
® of internal friction, equation (126), permit a further limitation to the range 0-10 < a < 0-20.
Numerical results were therefore obtained, as indicated in Figs. 9b-d, for combinations
of Vicp =125,2,5 v=0, 1/8, 1/4, 1/3, and a = 0-10, 0-15, 0-20. The values a selected
cover the range sin ® = 0-3-0-7. Except for two points which fall in Range Ila, all these
combinations are in Range IIb. For completeness the result for one case in Range II1,
v =0,a = 005, V/c, = 2 was also obtained.

Figure 18 shows a typical variation of the principal stress ¢, and of the angle ¢ in the
major Range IIb. There is a discontinuous rise in the principal stress ¢, at the inelastic
front, followed by a discontinuity in direction 8, but not in magnitude of g,, at the S-front.
There is further a minor increase in o, in the inelastic region combined with a change in
direction, ¢. For unit step pressures, p, = 1, Table | gives the values of the principal
stresses 0, 4, 03, and of the angle 8, and the locations of the fronts for all cases considered,
which fall into Range IIb.

Figures 19a, b show o, and 6 for the two cases, v = 1/3, a = 0-10, V/cp = 1-25 and
2:0, which fall into Range Ila. In these cases the initial stress rise is again at the inelastic
front, ¢ = . There is a change in o, and 6 at the S-front, but there are no further inelastic
regions, and no further changes in g, or 6. The solution in this range does not require
numerical integrations, but is entirely in closed form.

Range III is only of limited interest, because it applies only for very low angles @,
sin @ < 021, but a typical case is shown in Fig. 17. There is no discontinuous front, the
solution starts smoothly at ¢ = ¢, but the principal stress o, has a vertical tangent and
rises extremely rapidly, and the situation is practically the same as at a discontinuous front.

sin® = (126)

4.2 Effect of cohesion, k # 0

If the more general equation (1) for the plastic potential is used, instead of equation
(4), the differential equations for inelastic regions and their solutions derived in Section
2.1 remain valid. However, the configurations of the complete solutions found in Section
3 change, because of the different yield condition. The nature of these changes can be
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Fic. 18. Typical result in range ITb (v = 0, a = 015, V/cp, = 2).

predicted from the available solution [5] for a von Mises elasto-plastic material, for which
equation (1) applies with k # 0, but a = 0. The most general configuration for the latter
material is according to Fig. 20. The solution always begins with an elastic P-front, has
an S-front, and may have two (or less) inelastic regions of finite thickness as shown. No
plastic shock ever occurs. The arguments used in [5] to obtain the configuration shown
in Fig. 20, hold equally for the more general case when the plastic potential (1) applies,
and one can predict therefore that the solutions for the latter case must have configurations
covered by Fig. 20.

The transition from the configuration shown in Fig. 20 to those found in the present
paper requires consideration of a limiting process. The general solution for k # 0, is a
function of the ratio py/k. In the present solution it was assumed p, = 1, k — 0, so that
po/k — oo. Consider as a typical example the situation for Range 11b where the configura-
tion, Fig. 13, must follow from the one in Fig. 20 when py,/k — oo. In the configuration
according to Fig. 20 the stresses between the P-front and the first plastic zone must be of
the order k, ie. the stresses are quite small compared to the surface load. To reach the
large surface value py/k, large changes in the stresses must occur somewhere in the range,
¢, < ¢ < = This can happen only in one of the plastic regions. For large values of py/k
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TasLE |. RESULTS IN RANGE 1lb

Viep v 1743

p=

Ve 1
ERER4EN

Location

B

Band C

o*

-0,

—0,
—~0,

0 14555

0-10
015
0-20

142-84
13879
135-40

146-05
14673
147-21

15790
156-55
155-40

0-5788
04352
03202

06586
0-5523
0-4677

58:26
62:31
65-70

0-8111
0-7950
0-7881

0-4981
0-3872
0-3043

1125 1/8 14842

0-10
015
0-20

13751
133:47
130:52

150-41
150-96
15121

15771
15651
15550

0-5804
0-4424
0-3346

0-6560
0-5411
0-4467

69-32
7337
7632

0-8987
0-8791
0-8794

0-5519
0-4282
0-3395

152-49

010
015
0-20

131-53
12842
127-06

156-15
156-27
156-01

158-26
15729
156-58

0-5973
04733
0-3753

06326
0-5016
0-3972

83-46
86:57
8792

0-9641
0-9743
0-9813

0-5920
0-4746
0-3789

0 15930

0-10
015
020

157-82
155-68
15397

159-41
159-55
159-64

164-01
163-17
162:53

0-5960
04615
0-3547

0-6342
0-5155
0-4206

7077
7291
7462

0-8954
0-8943
0-8955

0-5498
04356
0-3457

220 1/8 16089

010
015
0-20

15503
15303
151-63

161-35
161-44
161-47

16403
163-43
16299

0-5979
04662
0-3622

0-6319
0-5098
04118

7676
7876
80-16

0-9441
0-9410
0-9409

0-5797
0-4584
03633

1/4 16322

010
015
0-20

152:10
150-68
15008

164-06
164-04
16395

16497
16462
164:38

0-6053
04776
0-3760

0 171-87

010
015
0-20

171-31
170-52
169-89

171-88
171-89
171-89

172:54
17230
17218

0-6105
0-4823
0-3805

06177

06233
0-4969
0-3965

0-4920
0-3918

8434
8576
8636
82:43
8322
8385

09791
0-9799
0-9801

0-6012
04773
0-3784

0-9703
0-9761
0-9789

0-5958
0-4754
0-3779

50  1/8 17248

010
015
0-20

170-28
169-55
169-04

172-51
172:51
172-51

17278
172:69
172-64

06111
0-4834
0-3820

06171
0-4908
03903

84-67
8541
8591

09887
0-9889
0-9893

0-6071
0-4817
0-3820

1/4 173-37

010
015
020

169-21
168-70
168-49

17342
173-42
173-41

173-50
173-47
173-45

0-6125
0-4854
0-3842

06156
0-4888
0-3879

87:53
8803
8825

0-9960
0-9961
0-9961

06116
0-4852
0:3846

1/3 17426

0-10

168-61

174-33

17433

06140

0-6141

89-91

0-9999

0-6140

* In degrees.

1 In this location o,

—1,0 = 90°.
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extremely rapid and large stress changes were found, [5], for the von Mises material near
the location ¢, which corresponds to the location of the inelastic shock front in Fig. 13.
This indicates that the configuration of the latter figure is a limiting case of that in Fig.
20, in which the stresses ahead of the first plastic region go towards zero in the same
manner as k, while the plastic region near ¢ degenerates into an infinitely narrow region,
Le. into a plastic front. The situation in other ranges can be explained similarly.

It is interesting to note that the numerical solution for the von Mises material en-
countered numerical difficulties if po/k > 1, because stress gradients near ¢ = ¢ become
extremely large. To overcome these difficulties asymptotic solutions near ¢ = ¢ were
obtained in [5]. The solution obtained in the present paper for the Coulomb material for
k — 0 are the corresponding, but much more complex asymptotic solutions for p, > k
for a material with the plastic potential (1).

There is no difficulty in obtaining the numerical solution for a # 0, k # 0 from the
relations derived in the paper using the configuration developed in [5]. However, due to
the dependency on three parameters a tabulation of the results would become quite
lengthy.
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F1G. 19a. Result in range Ila (v = 1/3, a = 0:10, V/c, = 1-25).
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F1G. 20. The number of plastic zones, two, one or none depends on the value of py/k.
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APPENDIX A

STEADY-STATE SOLUTION FOR AN ELASTIC HALF-SPACE

As background for Section 3, the details of the solution of the steady-state problem for
an elastic half-space are derived. The values of the stresses in Cartesian coordinates could
be obtained by integration from Ref. [1] and the desired principal stresses could be
computed. However, it is just as easy to obtain the latter directly from the knowledge of
the location of the shock fronts pp and ¢g in Fig. Al, coupled with the necessity of uniform
stresses for g5 > ¢ > ¢gpand n > p > @ The values ¢, and ¢ depend on the velocities
of the fronts given by equation (98) and (99).

Designating the principal stresses in the region ¢g > ¢ > ¢p by ¢, 7, and 75 = g,
it follows from equation (76) that

Ac (127)

e TTTTTIT I
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where the jump Ao remains to be determined. The direction of ¢, makes an angle (¢5— ¢;)
with the normal N to the S-front. The normal stress gy, and the tangential stress o with
respect to the S-front in the x—y plane can be expressed by the principal stresses ¢, and
G,

v .
oy = Ac [COSZ (ps— ¢p)+: sin? (g5 — (pp)jl (128)

. v
or = Ao |:sz(¢s—¢1=)+m COSZ(‘PS_(/’P):I . (129)

In the region 7 > ¢ > @4 the principal stresses are ¢, g, and o3 = g,. The surface
condition requires that ¢, = — | be vertical, making an angle (7 — ¢5) with the normal to
the shear front. The normal and tangential stresses (with respect to the S-front) are therefore

gy = —[cos? ps+ R sin? gg] (130)
or = —[sin? g5+ R cos? gg] (131)
where
R=%= g, (132)
1

There being no discontinuity in the normal and tangential stresses at a shear front,
oy and o7 in equations (128)—(131) can be equated and give two simultaneous equations
for Ao and R. The stresses o5 and ¢ in the z direction must also be equal, 5 = 5. Using
the abbreviation

N = cos? pg+(1—2v)cos? (pg— @p)— 1+ (133)
the discontinuity at the P-front for a unit surface load becomes

(1-v)
Ao = — N cos 2¢pg. (134)

In the region ¢ > ¢4 the principal stresses are

o, = —1 (135)

cos 2¢g
= T 136

Vv
0'3 = _I‘V‘Cosz¢s (137)
while the invariants become

(1+v) 0
J, = - N cos 2¢g (138)

_cos2ps (1-v+y?)

1
N 3N?

J2

cos? 2. (139)
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It is noted that ¢, and ¢ are functions of v in such fashion that N for V/c, > 1 is neces-
sarily positive, so that the condition J; < 0 is always satisfied. However, the yield
inequality gives a condition on a, equation (78) in the text.

APPENDIX B

ANALYSIS FOR RANGE Ib

In this range discontinuous elastic stress changes occur at the P- and S-fronts so that
the combined effect satisfies the yield condition at ¢ = ¢§*). The following derives the
required details of the state of stress for ¢ > ¢{*).

Using an approach similar to that in Appendix A, the stresses in the region
o5 = ¢ > ¢4 are given by equations (127), and the normal and tangential stresses
with respect to the S-front by equations (128), (129). The principal stress o, for ¢ = {"’
will, in this range, make an unknown angle § with the normal N to the S-front, Fig. A2,
and oy and o7 become alternatively

dN == 0'1 COSZ 6+0’2 Sin2 5 (140)

67 = g,8in’ d+0, cos* § (141)

SURFACE

Equating equations (128)(140), and (129)(141), gives two equations for the four
unknowns Ac, ¢,, , and d, while the yield relation, F = 0, furnishes a third equation. The
three equations are homogeneous in Ao and o, o, so that 4, y, 8 the stress ratios o,/Ac,
and their equivalent f§ can be computed. One finds

- L)

where the positive root is to be used. (The negative root corresponds only to a trivial
interchange between ¢, and ¢,.)
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The principal stress deviator s, and the invariant J, are

(1-2v)(p+1)
6(1—v)
(I+v)
= 44
J, = V)Aa (144)
where Ac is the as yet arbitrary stress discontinuity at gp, while J is obtained from the
equation

si(os™) = Aa (143)

cos 20 = %cos 2pp— @s). (145)

Excluding the trivial addition of multiples of =, there are two roots +|d| such that
there are two possible values, each, for y and 6:

y =2 (146)
0 = ¢s_gi|5|' (147)
APPENDIX C

ANALYSIS FOR RANGE IIa

Solutions in this range have an inelastic pressure front, but are otherwise entirely
elastic.
The stresses in the region ¢'*) < ¢ < ¢, Fig. A3, may be obtained from Section 2.2.

FiGc. A3

Let Ao be the as yet unknown discontinuity at ¢, then one finds
6,=Ac d,=06;=RAc (148)
where

= 1-a3
R (149)
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In the region ¢ > ¢{"’ the principal stress g, = —1 is vertical; the stress o3 = o,
must equal ¢, while ¢, remains to be determined, or

0’1=-—1 O'2=R0'1=_R 63=RAU (150)

where R is unknown. (The possibility of 6, = — 1 being vertical would be a trivial inter-
change of subscripts.)

At the shear front, the normal and tangential stresses oy and ¢; must be continuous,
which gives two equations to determine the unknown quantities Ag and R,

cos 2pg
Ao = — = - - 151
o (1-R) cos? (p— ps)+(1 +R) cos? ps—1 (151)

R = —1—(1+R)Ac. (152)

To check the condition F < 0for 7 > ¢ > ¢§"’ the invariants can now be determined
using equations (150), (152).

J, = (1+2R)Ac

(153)
- +R+R?
J, = 1+(1+R)Aa+( )(A )
After manipulations the condition F < 0 may be brought into the form
sin (4ps—2¢)sin2¢ <0 (154)
or, due to sin 2¢ < 0,
sin(4ps—2¢) = 0. (155)

APPENDIX D

ANALYSIS FOR RANGE HI

It was concluded in Section 3 that solutions without initial discontinuities exist in
Range III. Such solutions start at ¢ = ¢ with initial values § = 3, y = n/2, for which the
differential equations become singular so that their solution requires special treatment.
To obtain asymptotic solutions near the singularity, the variables ¢, 8 and y are replaced
by ¢, A and 7, respectively, defined in equations (122). The new variables are deemed to be
small quantities, so that approximate equations can be obtained by retaining in each
expression only the leading terms in the above quantities. However, the relative magni-
tudes of the three quantities are not known beforehand, requiring the retention of the
leading terms in each of the variables. The determinantal equation (30) becomes

ben? — A% = byt (156)



284 H. H. BLEicH, A. T. MATTHEWS and J. P. WRIGHT

where

- 12{3_(1—37)[17v—4a\/3(1+V)]} (157)

a —27){1 -2X(1 —2v)+aT3(1 +W[4+a/32~ 3)?)]}

1 74 2
16(1+v)[1—2v+6a2(1+v)]\/|:(——) —1:|

¢

(158)
(1 —2v){1 -2X(1 -2v)+ot%§(l +v)[4+a/32-3X)]

(1+v)(1 +2a,/3)
[(1—2v+6a%(1+v)] "
While by is positive everywhere, by is positive in Range III, considered here. Using

equations (34)-(36) expressions for §’ and 7’ can be formed and, after changing to the new
variables, lead to

X = (159)

dn GL

i AR 0
I A 7% +1 (160)
dA GL

5 = [BiA+Ba’ ] (161)

where

1 {_3+(1—2)7)[1—2v—4a\/3(1+v)}} (162)

4 =30y 1+(1—2v)(1—2X)

4 1-2v—a/3(1+v)
=_ — 163
B 3[1+(1—2v)(1—2X) (163)
=4 (3+(1-2X)[1-2v—20,/3(1+ )]
T (1-2X) 1+(1=2v)(1-2X)
where X is given by equation (159).

The knowledge of the nondimensional stress variable A, equivalent to f, is not sufficient

to find the stresses, and one additional relation is required. The most suitable one is
obtained by adding equations (34) and (35), leading to an equation for (s, +s,),

GL
vV

B, (164)

%[ln(sl +5)] = C, (165)

where

C = — 431 +v)[1 —2v+ay/3(1 — 5v)— 6a*(1 + v)]
LT3[ 2v+602(1 4+ )] [1+ (1 —2v)(1 —2X)]

(166)

When solving the three equations (156), (160), (161) in the three unknowns #, A and
GL/V, the first two are small quantities, while GL/V must go to infinity in the limit ¢ — 0.
(The possibility of finite values for this limit has been previously eliminated in Section 3
as permitting only trivial solutions s; = J, = 0.)
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bg and b, being positive, equation (156} is hyperbolic in character, and permits two
types of asymptotic solutions. In solutions of Type 4, # and A are proportional to |/,

n=D.Je A=D,/e (167)
while for solutions of Type B, # is proportional to /¢, while A is small of higher order,
n=D;J& A=Dy" (168)

where N > 1.
For solutions of Type A, equations (167), the leading terms on the right side of equations
(160), (161) only are retained, giving

dn GL

- — 169
de A % (169)
dA GL
e - 1
i B,A % (170}

Elimination of GL/V and substitution of equation (167) leads to a requirement on the
coefficients, A, = B,. This requirement is not satisfied, so that solutions of Type A are
impossible.

To obtain solutions of Type B, only the term bgn? on the left side of equation (156) is

retained, so that
D, = i\/(ﬁ) (70
bg

@-_-_l__ (172)

Equation {169} applies again, giving

This relation gives the proper sign for L and satisfies the requirement for singularity of
GL/V. To determine the quantity A it is noted that equation (170) would apply if N lies
in the range § < N < 1 for the exponent, so that in this case again no solutions can exist.
Alternatively, assuming N > 1, substitution of # and GL/V gives a solution for A propor-
tional to ¢, equivalent to N = 1, which is a contradiction. This leaves solely the possibility
N = 1, {or which case equation (161) indeed gives without further simplification the
solution
B,D?

D, =271
27 24,-B,

{173)

Being proportional to &, the quantity A is small compared to #, so that—as a first

approximation—the relations
b
n~ i\/(e—g) (174)
bg

A~0 {175)
may be used. Substitution of equation (172) into equation (165) gives after integration

(81 +53) = Co&" {176)
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where C, is an open constant of integration, while the exponent is

G

n:ZAl.

(177)

Equation (175), stating A ~ 0, implies § ~ 3, such that the ratios of the stresses must
be the same as at the inelastic shock front

5, = —1s, (178)
3
I, = %;sl (179)

1
gy, = [I'F&:]E]SI (180)

indicating that all stresses are proportional to &". It is important that this exponent, while
always positive, is less than unity and usually a very small number, of the order of 1/100
(for the specific case v = 0, a = 0-05 one finds n = 0-00598). The derivative of the stresses
with respect to the angle ¢ is infinite for ¢ — 0, and the small value of n indicates a very
rapid stress rise adjacent to the singularity.

(Received 20 March 1967)

AGcrpakT—Hccnenyercs uis  yOpyro-ljiaCTMYHOro MarepHana [ABYXMEpPHas CTalUMOHApHas 3ajava
3¢pdexkTa HMOYNLCHOTO NABJICHMA, ABMXEILETOCS C CBEPXCEHCMMYECKOH CKOPOCTBIO IO TNOBEPXHOCTH
NONYHNpPOCTPaHCTBa. IIpHHATOE YCIOBUE ILTACTHYHOCTH ABIAETCA QYHKUHEH NEPBOTO M BTOPOrO HHBapHa-
HTOB TEH30pa HanpskeHuH. OHO ABIAETCH TAKXKE NOAXOMALUMM [JIf 3€PHUCTOM cpeabl, B KOTOPO# seynpyroe
nedopMaluu IPOUCXOIAT OT H BHYTPEHHOTO CKOJIBLXEHHUS NpU yCiaoBuH KynoMGoBCKoro TpeHus.

3azaya HEOTBEMJIEHHO HENTMHENHAS M IPHBOAMT K CHCTEME COMPAKEHHBIX AU depeHIHANBHBIX ypaBHEHHH,
KOTOPBI€ PElIAIOTCA ¢ MOMOIUBIO BBIYMCIINTEILHON MalliHBI. Xapakrep pellieHHH COBEpLICHHO 3aBHCHM
OT BaXHBIX 6€3pa3MepHBIX TapaMETPOB, HAPUMED OT YncIa Maxa, ko3dduunenra ITyaccoHa H BeTHYMHE
o, o00o3Havaroell yroyl BHyTpeHHero Tpennsi. Jaercs Tabnuua ¢ pewseHHAMH AJA pa3HBIX KOMOuHanmeit
napaMeTpoB.



